Cho \(\int\limits_1^2 {f\left( x \right)dx} = 3\) và \(\int\limits_1^2 {g\left( x \right)dx} = - 2\). Giá trị \(\int\limits_1^2 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} \).
Quảng cáo
Trả lời:

Đáp án đúng là: A
\(\int\limits_1^2 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} \)\( = \int\limits_1^2 {f\left( x \right)dx} + \int\limits_1^2 {g\left( x \right)dx} \) = 3 – 2 = 1.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
\(\int\limits_0^1 {f'\left( x \right)dx} = 2024\)\( \Leftrightarrow \left. {f\left( x \right)} \right|_0^1 = 2024\)\( \Leftrightarrow f\left( 1 \right) - f\left( 0 \right) = 2024\)\( \Leftrightarrow f\left( 1 \right) = 2024 + f\left( 0 \right) = 2024 - 2023 = 1\).
Lời giải
Đáp án đúng là: A
Ta có \(f\left( b \right) - f\left( a \right) = \int\limits_a^b {f'\left( x \right)dx} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.