Câu hỏi:
06/05/2025 99Trong không gian Oxyz, cho hai mặt phẳng (α): x – 2y − 2z – 3 = 0; (β): 2x − 4y + (m – 1)z – 6 = 0 (m là tham số thực). Tìm m để (α) và (β) song song với nhau.
Quảng cáo
Trả lời:
Đáp án đúng là: D
Để (α) và (β) song song với nhau thì \(\frac{2}{1} = \frac{{ - 4}}{{ - 2}} = \frac{{m - 1}}{{ - 2}} \ne \frac{{ - 6}}{{ - 3}}\), suy ra không tồn tại m.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Mặt phẳng (P) có vectơ pháp tuyến là \(\overrightarrow n = \left( {2;1; - 2} \right)\).
Mặt phẳng x + 2y + 2z – 5 = 0 có vectơ pháp tuyến \(\overrightarrow {{n_1}} = \left( {1;2;2} \right)\).
Vì \(\overrightarrow n .\overrightarrow {{n_1}} = 0\) nên hai mặt phẳng này vuông góc với nhau.
Lời giải
Đáp án đúng là: A
Ta có \(\overrightarrow {{n_1}} = \left( {2; - 3;1} \right),\overrightarrow {{n_2}} = \left( {5; - 3; - 2} \right)\) lần lượt là vectơ pháp tuyến của mặt phẳng (P) và (Q).
Ta thấy \(\overrightarrow {{n_1}} \ne k\overrightarrow {{n_2}} \left( {k \ne 0} \right)\) suy ra hai vectơ \(\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} \) không cùng phương hay (P) cắt (Q).
Mặt khác \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 17 \ne 0\). Do đó (P) cắt (Q) nhưng không vuông góc.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.