Câu hỏi:
06/05/2025 61Trong không gian Oxyz, cho hai mặt phẳng (P): 2x – 3y + 5z – 1 = 0 và (Q): 4x + (m – 3)y + (m2 + 1)z – 7 = 0 (m là tham số). Tìm m để hai mặt phẳng song song.
Quảng cáo
Trả lời:
Đáp án đúng là: B
Hai mặt phẳng (P) và (Q) song song \( \Leftrightarrow \frac{4}{2} = \frac{{m - 3}}{{ - 3}} = \frac{{{m^2} + 1}}{5} \ne \frac{{ - 7}}{{ - 1}}\)
\( \Leftrightarrow \left\{ \begin{array}{l}\frac{{m - 3}}{{ - 3}} = 2\\\frac{{{m^2} + 1}}{5} = 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m = - 3\\m = \pm 3\end{array} \right. \Leftrightarrow m = - 3\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
Đã bán 1,5k
Đã bán 1,1k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian Oxyz cho hai mặt phẳng (P): 2x – 3y + z – 4 = 0; (Q): 5x – 3y – 2z – 7 = 0. Vị trí tương đối của (P) và (Q) là:
Câu 2:
Trong không gian Oxyz, mặt phẳng nào sau đây song song với mặt phẳng (Oyz)?
Câu 3:
Trong không gian Oxyz, cho mặt phẳng (P): 2x + y – 2z + 4 = 0. Mặt phẳng nào sau đây vuông góc với (P)?
Câu 4:
Trong không gian Oxyz, cho hai mặt phẳng (α): x – 2y − 2z – 3 = 0; (β): 2x − 4y + (m – 1)z – 6 = 0 (m là tham số thực). Tìm m để (α) và (β) song song với nhau.
Câu 5:
Trong không gian Oxyz, điều kiện của m để hai mặt phẳng (P): 2x + 2y – z = 0 và (Q): x + y + mz + 1 = 0 cắt nhau là
Câu 6:
Trong không gian Oxyz, cho hai mặt phẳng (P): 3x – 5y + 2z + 1 = 0 và (Q): 9x + (m – 11)y + (m2 – 10)z – 4 = 0. Tìm m để mặt phẳng (P) song song với mặt phẳng (Q).
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận