Câu hỏi:

19/08/2025 71 Lưu

Cho hình bình hành ABCD. Gọi E, F là hai điểm thỏa mãn \(\overrightarrow {BE} = \frac{1}{3}\overrightarrow {BC} \), \(\overrightarrow {BF} = \frac{1}{4}\overrightarrow {BD} \) khi đó \(\overrightarrow {AE} = k\overrightarrow {AF} \). Tìm k.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Tìm k. (ảnh 1)

Gọi \(\overrightarrow {AB} = \overrightarrow b \); \(\overrightarrow {AD} = \overrightarrow d \)

Ta có \(\overrightarrow {BC} = \overrightarrow {AD} = \overrightarrow d \)\(\overrightarrow {BD} = \overrightarrow {BA} + \overrightarrow {AD} = - \overrightarrow b + \overrightarrow d \)

Theo đề bài, ta có: \(\overrightarrow {BE} = \frac{1}{3}\overrightarrow {BC} = \frac{1}{3}\overrightarrow d \)

Suy ra \(\overrightarrow {AE} = \overrightarrow {AB} + \overrightarrow {BE} = \overrightarrow b + \frac{1}{3}\overrightarrow d \)

Ta có \(\overrightarrow {BF} = \frac{1}{4}\overrightarrow {BD} = \frac{1}{4}\left( { - \overrightarrow b + \overrightarrow d } \right)\)

Nên \(\overrightarrow {AF} = \overrightarrow {AB} + \overrightarrow {BE} = \overrightarrow b + \frac{1}{4}\left( { - \overrightarrow b + \overrightarrow d } \right) = \frac{3}{4}\overrightarrow b + \frac{1}{4}\overrightarrow d \)

Giả sử \(\overrightarrow {AE} = k\overrightarrow {AF} \), tức là:

\(\overrightarrow b + \frac{1}{3}\overrightarrow d = k\left( {\frac{3}{4}\overrightarrow b + \frac{1}{4}\overrightarrow d } \right) = \frac{{3k}}{4}\overrightarrow b + \frac{k}{4}\overrightarrow d \)

Do đó  k = \(\frac{3}{4}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Ta có: A = [−4; 2] và B = [−8; a + 2].

Mà A ∩ B có vô số phần tử nên −4 < a + 2 < 2 hoặc 2 < a + 2.

Suy ra −6 < a < 0 hoăc a > 0.

Lời giải

cho tam giác abc thỏa mãn a^3 b^3-c^3/a b-c=c^2 (ảnh 1)

Do a, b, c là độ dài ba cạnh của tam giác ABC nên a + b – c ≠ 0.

Như vậy \(\frac{{{a^3} + {b^3} - {c^3}}}{{a + b - c}} = {c^2}\) khi

a3 + b3 − c3 = ac2 + bc2 – c3

a3 + b3 − ac2 + bc2 = 0

(a + b). (a2 – ab + b2) − c2 (a + b) = 0

(a + b) .( a2 – ab + b2 − c2 ) = 0

 a2 – ab + b2 − c2 = 0 (do a + b ≠ 0)

 a2 – ab + b2 = c2 (1)

Mặt khác theo định lý Cosin ta có:  a2 + b2 – 2ab.cos \(\widehat C\)(2)

Từ (1) và (2) ta có: 2cos C = 1 nên cos C = \(\frac{1}{2}\)

Do đó \(\widehat C\)= 60°.

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP