Cho khoảng A = (−1; m + 2) và nửa khoảng B = [3m – 4; 14] (m là tham số). Gọi S là tập hợp tất cả các số nguyên m sao cho A∪B = (−1;14). Tính tổng các phần tử của tập hợp S.
Cho khoảng A = (−1; m + 2) và nửa khoảng B = [3m – 4; 14] (m là tham số). Gọi S là tập hợp tất cả các số nguyên m sao cho A∪B = (−1;14). Tính tổng các phần tử của tập hợp S.
Quảng cáo
Trả lời:
Lời giải:
Để A ∪ B = (−1; 14), ta cần có −1 < 3m – 4 và m + 2 ≥ 14.
Từ m + 2 ≥ 14, ta có m ≥ 12.
Từ −1 < 3m – 4, ta có 3m > 3 suy ra m > 1.
Kết hợp cả hai điều kiện trên, ta có m ≥ 12.
Các số nguyên thỏa mãn là m ∈ {12; 13; 14; …..}.
Tuy nhiên, đề bài không cho giới hạn trên của m.
Giả sử ta xét tập hợp S chỉ chứa các số nguyên m sao cho
A ∪ B = (−1; 14) và m ≤ 20.
Khi đó S = {12; 13; ….. ; 20}.
Tổng các phần tử của S = \(\sum\limits_{m = 12}^{20} m = \frac{{(12 + 20).(20 - 12 + 1)}}{2}\)\( = \frac{{32 \cdot 9}}{2}\)= 144.
Vậy tổng các phần tử của tập hợp S là 144.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Ta có: A = [−4; 2] và B = [−8; a + 2].
Mà A ∩ B có vô số phần tử nên −4 < a + 2 < 2 hoặc 2 < a + 2.
Suy ra −6 < a < 0 hoăc a > 0.
Lời giải

Do a, b, c là độ dài ba cạnh của tam giác ABC nên a + b – c ≠ 0.
Như vậy \(\frac{{{a^3} + {b^3} - {c^3}}}{{a + b - c}} = {c^2}\) khi
a3 + b3 − c3 = ac2 + bc2 – c3
a3 + b3 − ac2 + bc2 = 0
(a + b). (a2 – ab + b2) − c2 (a + b) = 0
(a + b) .( a2 – ab + b2 − c2 ) = 0
a2 – ab + b2 − c2 = 0 (do a + b ≠ 0)
a2 – ab + b2 = c2 (1)
Mặt khác theo định lý Cosin ta có: a2 + b2 – 2ab.cos \(\widehat C\)(2)
Từ (1) và (2) ta có: 2cos C = 1 nên cos C = \(\frac{1}{2}\)
Do đó \(\widehat C\)= 60°.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

