Câu hỏi:

19/08/2025 107 Lưu

Cho phân số P = \(\frac{{6n + 5}}{{3n + 2}}\). Chứng minh P là phân số tối giản.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải:

 Ta có P =\(\frac{{6n + 5}}{{3n + 2}}\) (n ℕ)

Để P là phân số tối giản thì ƯCLN (6n + 5; 3n + 2) = 1.

Gọi ƯCLN (6n + 5; 3n + 2) là d (d  ℕ)

Ta có: (6n + 5)  d và (3n + 2)  d

Suy ra (6n + 5) − 2(3n + 2)  d             

Ta có: 6n + 5 −2(3n + 2)

 = 6n + 5 − (6n + 4) = 6n + 5 − 6n − 4

= 6n −6n + (5  − 4) = 0 + 1 = 1

Khi đó 1 d nên d = 1.

Do đó ƯCLN (6n + 5; 3n + 2) = 1.

Vậy P là phân số tối giản.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Cho tam giác ABC vuông tại A có AB = 3a, AC = 4a. Tính độ dài vectơ BC. (ảnh 1) 

Xét ∆ ABC vuông tại A có

AB2 + AC2 = BC2 (định lý Pythagoras)

Suy ra \(\left| {\overrightarrow {BC} } \right| = BC = \sqrt {A{B^2} + A{C^2}} \)

= \(\sqrt {{{\left( {3a} \right)}^2} + {{\left( {4a} \right)}^2}} \)= 5a

Lời giải

cho tam giác abc thỏa mãn a^3 b^3-c^3/a b-c=c^2 (ảnh 1)

Do a, b, c là độ dài ba cạnh của tam giác ABC nên a + b – c ≠ 0.

Như vậy \(\frac{{{a^3} + {b^3} - {c^3}}}{{a + b - c}} = {c^2}\) khi

a3 + b3 − c3 = ac2 + bc2 – c3

a3 + b3 − ac2 + bc2 = 0

(a + b). (a2 – ab + b2) − c2 (a + b) = 0

(a + b) .( a2 – ab + b2 − c2 ) = 0

 a2 – ab + b2 − c2 = 0 (do a + b ≠ 0)

 a2 – ab + b2 = c2 (1)

Mặt khác theo định lý Cosin ta có:  a2 + b2 – 2ab.cos \(\widehat C\)(2)

Từ (1) và (2) ta có: 2cos C = 1 nên cos C = \(\frac{1}{2}\)

Do đó \(\widehat C\)= 60°.

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP