Quảng cáo
Trả lời:
Lời giải:
Ta có P =\(\frac{{6n + 5}}{{3n + 2}}\) (n ∈ ℕ)
Để P là phân số tối giản thì ƯCLN (6n + 5; 3n + 2) = 1.
Gọi ƯCLN (6n + 5; 3n + 2) là d (d ∈ ℕ)
Ta có: (6n + 5) ⋮ d và (3n + 2) ⋮ d
Suy ra (6n + 5) − 2(3n + 2) ⋮ d
Ta có: 6n + 5 −2(3n + 2)
= 6n + 5 − (6n + 4) = 6n + 5 − 6n − 4
= 6n −6n + (5 − 4) = 0 + 1 = 1
Khi đó 1 ⋮ d nên d = 1.
Do đó ƯCLN (6n + 5; 3n + 2) = 1.
Vậy P là phân số tối giản.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Ta có: A = [−4; 2] và B = [−8; a + 2].
Mà A ∩ B có vô số phần tử nên −4 < a + 2 < 2 hoặc 2 < a + 2.
Suy ra −6 < a < 0 hoăc a > 0.
Lời giải
Lời giải:
ĐK: cos 3x ≠ 0 ⟺ cos 3x ≠ 1
⟺ 3x ≠ k2π ⟺ x ≠ \(\frac{{k2\pi }}{3}\)(k ∈ ℤ)
Ta có \[\frac{{\sin 3x}}{{\cos (3x - 1)}} = 0\]
⟺ sin3x = 0
⟺ sin3x = kπ
⟺ x = \(\frac{{k\pi }}{3}\)(k ∈ ℤ)
Kết hợp điều kiện x = \(\frac{\pi }{3} + \frac{{k2\pi }}{3}\) (k ∈ ℤ)
Vậy phương trình đã cho có nghiệm là \(x = \frac{\pi }{3} + \frac{{k2\pi }}{3}\,\,(k \in {\rm{ }}\mathbb{Z})\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

