Cho phương trình x2 – 2x + k2 – 3k – 9 = 0 với k là tham số. Khi đó phương trình đã cho có Q = \(\sqrt {{x_1}^2 + {x_2} - {x_1} + k + 10} + \sqrt {{x_1}^2 - 2{x_2} + 1} \).
Cho phương trình x2 – 2x + k2 – 3k – 9 = 0 với k là tham số. Khi đó phương trình đã cho có Q = \(\sqrt {{x_1}^2 + {x_2} - {x_1} + k + 10} + \sqrt {{x_1}^2 - 2{x_2} + 1} \).
Quảng cáo
Trả lời:
Lời giải:
Ta có ∆’ = 1 – (k2 – 3k – 9) ≥ 0
k2 – 3k – 10 ≤ 0
(k – 5)(k +2) ≤ 0 (−2 ≤ k ≤ 5).
Theo định lý Viète, ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}{x_2} = {k^2} - 3k - 9\end{array} \right.\)
Suy ra \({x_2} = 2 - {x_1}\)
Thay vào Q ta có: \(\sqrt {{{\left( {2 - x} \right)}^2} + {x_2} - (2 - {x_2}) + k + 10} + \sqrt {{{(x - 1)}^2}} \)
=\(\sqrt {{x_2}^2 - 2{x_2} + 1 + k + 11} + \sqrt {{{\left( {{x_2} - 1} \right)}^2}} \)≥\(\sqrt {11 - 2} = 3\)
Vậy Qmin = 3 khi k = −2 và x1 = x2 = 1
Ta xét \({x_1}^2 + {x_2} - {x_1} + k + 10 = {x_1}^2 - 2{x_1} + ({x_2} + {x_1}) + k + 10\)
x1 là nghiệm của phương trình suy ra \({x_1}^2 - 2{x_1} = \) 9 + 3k −k2
Thế vào trên ta có: 9 + 3k −k2 + 2 + k + 10 = \(\sqrt { - {k^2} + {\rm{ }}4k{\rm{ }} + {\rm{ }}21} \)−k2 + 4k + 21
Xét x22 − x2 + 1 tương tự x2 là nghiệm của phương trình
x22 − x2 + 1 = 10 + 3k −k2
Suy ra Q = \(\sqrt { - {k^2} + {\rm{ }}4k{\rm{ }} + {\rm{ }}21} \) + \(\sqrt {10{\rm{ }} + {\rm{ }}3k - {k^2}} \)
=\(\sqrt {\left( {5 - k} \right)\left( {k + 2} \right)} + \sqrt {\left( {7 - k} \right)\left( {k + 3} \right)} \le \sqrt {(5 - k + k + 3)(k + 2 + 7 - k)} \)
Suy ra Q ≤ \(6\sqrt 2 \)
Vậy Qmax =\(6\sqrt 2 \) khi k =\(\frac{{29}}{{17}}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Thay m = 4 vào phương trình x2 + 3x + m – 4 = 0, ta có
x2 + 3x = 0
x (x + 3) = 0
x = 0 hoặc x = −3
Vậy tại m = 4 thì x = 0 và x = −3 là nghiệm của phương trình
Lời giải
Lời giải:
Ta có: SABC = SABD + SACD
\(\frac{1}{2}AB.AC.{\mathop{\rm Sin}\nolimits} A = \frac{1}{2}AB.AD\sin \widehat {BAD} + \frac{1}{2}AC.AD\sin \widehat {CAD}\)
\(2bc.\sin \frac{A}{2}\cos \frac{A}{2} = c.AD\sin \frac{A}{2} + b.AD.sin\frac{A}{2}\)
\(2bc.\sin \frac{A}{2}.\cos \frac{A}{2} = AD.\sin \frac{A}{2}.\left( {b + c} \right)\)
\(AD = \frac{{2bc.\cos \frac{A}{2}}}{{b + c}}\)(đpcm)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.