Cho phương trình x3 + ax2 + bx + 1 = 0. Biết rằng a, b là các số hữu tỉ và \(1 + \sqrt 2 \) là nghiệm của phương trình. Tìm a và b.
Cho phương trình x3 + ax2 + bx + 1 = 0. Biết rằng a, b là các số hữu tỉ và \(1 + \sqrt 2 \) là nghiệm của phương trình. Tìm a và b.
Quảng cáo
Trả lời:
Lời giải:
Vì phương trình x3 + ax2 + bx + 1= 0 có \(1 + \sqrt 2 \) là nghiệm nên
\({\left( {1 + \sqrt 2 } \right)^3} + a{\left( {1 + \sqrt 2 } \right)^2} + \left( {1 + \sqrt 2 } \right)b + 1 = 0\)
Biến đổi và rút gọn ta được (3a + b + 8) + (2a + b + 5)\(\sqrt 2 \)(1)
Vì a và b là các số hữu tỉ nên \(\left\{ \begin{array}{l}3a + b + 8 = 0\\2a + b + 5 = 0\end{array} \right.\).
Do đó \(\left\{ \begin{array}{l}a = - 3\\b = 1\end{array} \right.\).
Vậy a = −3 và b =1 là giá trị phải tìm.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Ta có: A = [−4; 2] và B = [−8; a + 2].
Mà A ∩ B có vô số phần tử nên −4 < a + 2 < 2 hoặc 2 < a + 2.
Suy ra −6 < a < 0 hoăc a > 0.
Lời giải
Lời giải:
ĐK: cos 3x ≠ 0 ⟺ cos 3x ≠ 1
⟺ 3x ≠ k2π ⟺ x ≠ \(\frac{{k2\pi }}{3}\)(k ∈ ℤ)
Ta có \[\frac{{\sin 3x}}{{\cos (3x - 1)}} = 0\]
⟺ sin3x = 0
⟺ sin3x = kπ
⟺ x = \(\frac{{k\pi }}{3}\)(k ∈ ℤ)
Kết hợp điều kiện x = \(\frac{\pi }{3} + \frac{{k2\pi }}{3}\) (k ∈ ℤ)
Vậy phương trình đã cho có nghiệm là \(x = \frac{\pi }{3} + \frac{{k2\pi }}{3}\,\,(k \in {\rm{ }}\mathbb{Z})\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

