Viết số thích hợp vào chỗ trống
a) Số tự nhiên bé nhất mà lớn hơn 2024,09 là.....
b) Số tự nhiên lớn nhất mà bé hơn 2024,99 là.....
Viết số thích hợp vào chỗ trống
a) Số tự nhiên bé nhất mà lớn hơn 2024,09 là.....
b) Số tự nhiên lớn nhất mà bé hơn 2024,99 là.....
Quảng cáo
Trả lời:
Lời giải:
a) Số tự nhiên bé nhất mà lớn hơn 2024,09 là: 2025
b) Số tự nhiên lớn nhất mà bé hơn 2024,99 là: 2024
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
\(y = \frac{{2\sin x + \cos x}}{{\sin x + 2\cos x + 4}}\)
⇔ 2sinx + cosx = y.sinx + y.2cosx + 4y
⇔ (y.sinx – 2sinx) + (cosx.2y – cosx) = – 4y
⇔ sinx(y – 2) + cosy(2y – 1) = – 4y (*)
Điều kiện để (*) có nghiệm là: (y – 2)2 + (2y – 1)2 ≥ 16y2
⇔ 16y2 – 8y + 5 ≤ 0
⇔ \(\frac{{ - 4 - \sqrt {71} }}{{11}} \le y \le \frac{{ - 4 + \sqrt {71} }}{{11}}\)
Vậy tập giá trị của y là \(\left[ {\frac{{ - 4 - \sqrt {71} }}{{11}};\frac{{ - 4 + \sqrt {71} }}{{11}}} \right]\)
Lời giải
Lời giải:
Ta có: x∈\(\left[ {0;\frac{{7\pi }}{{12}}} \right]\)
⇒ \(0 \le 2x \le \frac{{7\pi }}{6}\)
⇒ \( - \frac{1}{2} \le \sin 2x \le 1\)
⇒ \( - \frac{1}{2} \le 7m + 3 \le 1\)
⇒ \( - \frac{1}{2} \le m \le - \frac{2}{7}\)
Vậy \(m \in \left[ { - \frac{1}{2}; - \frac{2}{7}} \right]\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.