Quảng cáo
Trả lời:
Lời giải:
phương trình tanx = m, chúng ta phải chú ý đến điều kiện để hàm số có nghĩa. Sau khi giải ra nghiệm của phương trình, chúng ta cần phải xét với điều kiện ban đầu. Chính vì thế, việc kết hợp nghiệm là một việc mà chúng ta thường xuyên phải thực hiện.
Để hàm số tanx = m có nghĩa thì cosx ≠ 0 hay \(x \ne \frac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right)\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Khi rót từ thùng 1 sang thùng 2 thì tổng số lít dầu 2 thùng không đổi, là 280 lít
Số lít dầu thùng 2 lúc này:
(280 + 16) : 2 = 148 (lít)
Số lít dầu thùng 2 ban đầu:
148 – 25 = 123 (lít)
Số lít dầu thùng 1 ban đầu:
280 – 123 = 157 (lít)
Lời giải
Lời giải:
\(y = \frac{{2\sin x + \cos x}}{{\sin x + 2\cos x + 4}}\)
⇔ 2sinx + cosx = y.sinx + y.2cosx + 4y
⇔ (y.sinx – 2sinx) + (cosx.2y – cosx) = – 4y
⇔ sinx(y – 2) + cosy(2y – 1) = – 4y (*)
Điều kiện để (*) có nghiệm là: (y – 2)2 + (2y – 1)2 ≥ 16y2
⇔ 16y2 – 8y + 5 ≤ 0
⇔ \(\frac{{ - 4 - \sqrt {71} }}{{11}} \le y \le \frac{{ - 4 + \sqrt {71} }}{{11}}\)
Vậy tập giá trị của y là \(\left[ {\frac{{ - 4 - \sqrt {71} }}{{11}};\frac{{ - 4 + \sqrt {71} }}{{11}}} \right]\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.