Cho đa thức P(x) = ax2 + bx + c biết 7a ‒ b + 4c = 0. Chứng minh P(2) . P(‒1) không là số dương.
Cho đa thức P(x) = ax2 + bx + c biết 7a ‒ b + 4c = 0. Chứng minh P(2) . P(‒1) không là số dương.
Quảng cáo
Trả lời:
Lời giải:
Ta có 7a − b + 4c = 0, suy ra b = 7a + 4c
Mà P(2) . P(−1)
= (4a + 2b + c)(a − b + c)
= [4a + 2(7a + 4c) + c][a − (7a + 4c) + c)
= (18a + 9c)(−6a − 3c)
= 9(2a + a).(‒3)(2a + c)
= −27(2a + c)2 ≤ 0
Vậy P(2).P(1) ≤ 0.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
ABCD là hình vuông nên OA = OC
Suy ra d(A, (SBD)) = d(C, (SBD))
Kẻ AH ⊥ SO
BD ⊥ AO, BD ⊥ SA nên BD ⊥ (SAO).
Suy ra BD ⊥ AH.
AH ⊥ (SBD) nên d(A,(SBD)) = AH
Xét tam giác SAO: \[\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{O^2}}}\]
SA = 3a, \[AO = a\sqrt 2 \], suy ra \[AH = \frac{{3a\sqrt {22} }}{{11}}\]
Vậy khoảng cách từ C đến (SBD) bằng \[\frac{{3a\sqrt {22} }}{{11}}.\]
Lời giải
Lời giải:
Đáp án đúng là: A
Thay x = 4 vào hàm số y = 2x ‒ 5, ta được: y = 2 . 4 ‒ 5 = 3.
Do đó điểm (4; 3) thuộc đồ thị hàm số y = 2x – 5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.