Câu hỏi:
23/05/2025 1,471
Một thành phố có ba loại phương tiện giao thông công cộng: xe buýt, tàu điện ngầm và taxi. Tỉ lệ sử dụng mỗi loại phương tiện đối với xe buýt \(40\% \), tàu điện ngầm \(35\% \), taxi \(25\% \). Tỉ lệ trễ giờ của xe buýt, tàu điện ngầm và taxi trong một tháng lần lượt là: \(20\% \), \(10\% \), \(5\% \). Anh Lộc là một người dân trong thành phố. Trong tháng đầu tiên, anh Lộc chọn một trong ba loại phương tiện trên để đi làm, sao cho xác suất chọn mỗi loại phương tiện đúng bằng tỉ lệ sử dụng phương tiện đó của người dân trong thành phố. Từ tháng thứ hai trở đi, cách anh Lộc chọn phương tiện đi làm phụ thuộc vào việc anh có bị trễ giờ trong tháng trước hay không: Nếu tháng trước anh Lộc không bị trễ giờ: Anh ấy tiếp tục sử dụng loại phương tiện mà anh đã đi trong tháng đó. Nếu tháng trước anh Lộc bị trễ giờ: Anh ấy sẽ chọn ngẫu nhiên một trong hai loại phương tiện còn lại để đi làm trong tháng tiếp theo, với xác suất chọn mỗi loại là \(50\% \). Xác suất để anh Lộc sử dụng taxi trong tháng thứ ba có dạng \(\frac{a}{b}\) (là phân số tối giản). Tính \(b - 2a\)?
Một thành phố có ba loại phương tiện giao thông công cộng: xe buýt, tàu điện ngầm và taxi. Tỉ lệ sử dụng mỗi loại phương tiện đối với xe buýt \(40\% \), tàu điện ngầm \(35\% \), taxi \(25\% \). Tỉ lệ trễ giờ của xe buýt, tàu điện ngầm và taxi trong một tháng lần lượt là: \(20\% \), \(10\% \), \(5\% \). Anh Lộc là một người dân trong thành phố. Trong tháng đầu tiên, anh Lộc chọn một trong ba loại phương tiện trên để đi làm, sao cho xác suất chọn mỗi loại phương tiện đúng bằng tỉ lệ sử dụng phương tiện đó của người dân trong thành phố. Từ tháng thứ hai trở đi, cách anh Lộc chọn phương tiện đi làm phụ thuộc vào việc anh có bị trễ giờ trong tháng trước hay không: Nếu tháng trước anh Lộc không bị trễ giờ: Anh ấy tiếp tục sử dụng loại phương tiện mà anh đã đi trong tháng đó. Nếu tháng trước anh Lộc bị trễ giờ: Anh ấy sẽ chọn ngẫu nhiên một trong hai loại phương tiện còn lại để đi làm trong tháng tiếp theo, với xác suất chọn mỗi loại là \(50\% \). Xác suất để anh Lộc sử dụng taxi trong tháng thứ ba có dạng \(\frac{a}{b}\) (là phân số tối giản). Tính \(b - 2a\)?
Quảng cáo
Trả lời:
Đáp án: 5354.
Gọi \({A_i}\), \({B_i}\), \({C_i}\) lần lượt là các biến cố anh Lộc chọn xe buýt, tàu điện ngầm và taxi ở tháng thứ \(i\) với \(i = 1,2,3\). \(T\) là biến cố anh Lộc bị trễ.
Ta có \(P\left( {T|{A_i}} \right) = 0,2\), \(P\left( {T|{B_i}} \right) = 0,1\), \(P\left( {T|{C_i}} \right) = 0,05\).
Đặt \(P\left( {{A_i}} \right) = {x_i}\), \(P\left( {{B_i}} \right) = {y_i}\), \(P\left( {{C_i}} \right) = {z_i}\). Ta có sơ đồ cây như hình vẽ
Từ sơ đồ cây ta có
\({x_{i + 1}} = P\left( {{A_{i + 1}}} \right) = 1 \cdot 0,8 \cdot {x_i} + 0,5 \cdot 0,1 \cdot {y_i} + 0,5 \cdot 0,05 \cdot {z_i}\)
\({y_{i + 1}} = P\left( {{B_{i + 1}}} \right) = 0,5 \cdot 0,2 \cdot {x_i} + 1 \cdot 0,9 \cdot {y_i} + 0,5 \cdot 0,05 \cdot {z_i}\)
\({z_{i + 1}} = P\left( {{C_{i + 1}}} \right) = 0,5 \cdot 0,2 \cdot {x_i} + 0,5 \cdot 0,1 \cdot {y_i} + 1 \cdot 0,95 \cdot {z_i}\)
Mà \({x_1} = 0,4\), \({y_1} = 0,35\) và \({z_1} = 0,25\).
Suy ra \({x_2} = 0,34375\), \({y_2} = 0,36125\), \({z_2} = 0,295\).
Vậy \({z_3} = \frac{{5323}}{{16000}} \Rightarrow a = 5323,b = 16000 \Rightarrow b - 2a = 5354\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 8.
Ta có \(AB = 2\sqrt 2 \Rightarrow AC = 4.\) Chọn hệ trục \(Oxy\) như hình vẽ.
Khi đó, mặt cắt tại \(x = t\) là hình vuông có diện tích \(S\left( t \right) = \frac{1}{2}{\left( {2\sqrt {2t} } \right)^2} = 4t\).
Vậy thể tích của lều là \(V = \int\limits_0^2 {S\left( t \right){\rm{d}}t} = \int\limits_0^2 {4t{\rm{d}}t} = \left. {2{t^2}} \right|_0^2 = 8{\rm{ }}\left( {{{\rm{m}}^3}} \right).\)
Lời giải
Đáp án: 73,0.
Xác định các vectơ vận tốc:
Gọi \(\vec a:\) vectơ vận tốc của máy bay Su-30
\(\vec b:\) vectơ vận tốc của máy bay MiG-31
\(\vec c:\) vectơ vận tốc của gió
\({\vec u_1}:\) vectơ chỉ phương của đường thẳng quỹ đạo bay của máy bay Su-30
\({d_1}:\) đường thẳng quỹ đạo bay của máy bay Su-30
\({\vec u_2}:\) vectơ chỉ phương của đường thẳng quỹ đạo bay của máy bay MiG-31
\({d_2}:\) đường thẳng quỹ đạo bay của máy bay MiG-31
\(\left( T \right):\) mặt trụ có tâm \(C\left( {178\,;430\,;0} \right)\) bán kính \(r = 7.\)
\[\begin{array}{l}\left| {{{\vec v}_1}} \right| = \sqrt {{3^2} + {4^2} + {0^2}} = 5 \Rightarrow \vec a = \frac{{900}}{5}{{\vec v}_1} = \left( {540\,;720\,;0} \right)\\\left| {{{\vec v}_2}} \right| = 13 \Rightarrow \vec b = \frac{{910}}{{13}}{{\vec v}_2} = \left( {350\,;840\,;0} \right)\\\left| {\vec u} \right| = 5 \Rightarrow \vec c = \frac{{80}}{5}\vec u = \left( { - 48\,;0\,;64} \right)\\{{\vec u}_1} = \vec a + \vec c = \left( {492\,;720\,;64} \right) \Rightarrow {d_1}:\left\{ \begin{array}{l}x = 492t\\y = 35 + 720t\\z = 10 + 64t\end{array} \right.\\{{\vec u}_2} = \vec b + \vec c = \left( {302\,;840\,;64} \right) \Rightarrow {d_2}:\left\{ \begin{array}{l}x = 31 + 302t\\y = 10 + 840t\\z = 11 + 64t\end{array} \right.\\\left( T \right):{\left( {x - 178} \right)^2} + {\left( {y - 430} \right)^2} = {7^2}.\end{array}\]
Vì không phận cấm bay có độ cao \(43{\rm{ km}}\) nên MiG-31 vào trong không phận thì độ cao tối đa của máy bay là \(z \le 43 \Rightarrow 11 + 64t \le 43 \Leftrightarrow t \le 0,5.\)
Tìm giao điểm của \({d_2}\) và \(\left( T \right)\).
Xét phương trình: \({\left( {31 + 302t - 178} \right)^2} + {\left( {10 + 840t - 430} \right)^2} = 49\)
\( \Leftrightarrow 796804{t^2} - 794388t + 197960 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0,51 > 5\\t = 0,49 < 5\end{array} \right.\).
Dễ dàng nhận thấy MiG-31 đi vào không phận từ một điểm trên mặt trụ và đi ra tại một điểm trên đáy trên của khối trụ. Đáy trên của khối trụ nằm trong mặt phẳng có phương trình là \(z = 43\) hay \(t = 0,5.\)
Suy ra, sau \(0,5\) giờ MiG-31 nằm ở vị trí \(\left\{ \begin{array}{l}x = 31 + 302 \cdot 0,5 = 182\\y = 10 + 840 \cdot 0,5 = 430\\z = 43\end{array} \right. \Rightarrow M\left( {182\,;430\,;43} \right)\).
Su-30 nằm ở vị trí \(\left\{ \begin{array}{l}x = 492 \cdot 0,5 = 246\\y = 35 + 720 \cdot 0,5 = 395\\z = 42\end{array} \right. \Rightarrow N\left( {246\,;395\,;42} \right)\).
Khoảng cách giữa hai máy bay cần tìm là
\(MN = \sqrt {{{\left( {246 - 182} \right)}^2} + {{\left( {395 - 430} \right)}^2} + {{\left( {42 - 43} \right)}^2}} \approx 72,95 \approx 73,0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.