Câu hỏi:
24/05/2025 324PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số \(y = x - 1 + \frac{9}{{x + 2}}\).
a) Tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}\).
Quảng cáo
Trả lời:
a) Đúng. Hàm số xác định khi và chỉ khi \(x + 2 \ne 0 \Rightarrow x \ne - 2\).
Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}\).
Câu hỏi cùng đoạn
Câu 2:
b) Hàm số có đạo hàm là \[y' = 1 - \frac{9}{{{{\left( {x + 2} \right)}^2}}}\].
Lời giải của GV VietJack
b) Đúng. Ta có \[y' = 1 - \frac{9}{{{{\left( {x + 2} \right)}^2}}}\].
Câu 3:
c) Hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 5} \right)\,\,{\rm{v\`a }}\,\,\left( {1; + \infty } \right)\).
Lời giải của GV VietJack
c) Đúng. Ta có \(y' = 0 \Leftrightarrow x = - 5\) hoặc \(x = 1\).
Bảng biến thiên của hàm số:
Từ bảng biến thiên, ta thấy hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ; - 5} \right)\,\,{\rm{v\`a }}\,\,\left( {1; + \infty } \right)\).
Câu 4:
d) Hàm số có giá trị cực đại lớn hơn giá trị cực tiểu.
Lời giải của GV VietJack
d) Sai. Từ bảng biến thiên ở trên, ta thấy hàm số có giá trị cực đại là và giá trị cực tiểu là \({y_{CT}} = 3\). Ta có \( - 9 < 3\) nên .
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 0,3.
Gọi biến cố \(A:\) “Bé An được mẹ dẫn theo khi đi mua sắm”.
\(B:\) “Bé An được mẹ mua đồ chơi”.
Ta cần tính \(P\left( {B|\bar A} \right)\).
Theo đề bài, ta có: \[P\left( A \right) = \frac{2}{5};P\left( {\bar A} \right) = \frac{3}{5};P\left( {B|A} \right) = 70\% = \frac{7}{{10}};P\left( {A|B} \right) = \frac{{14}}{{23}}.\]
Ta có \(P\left( B \right) \cdot P\left( {A|B} \right) = P\left( A \right) \cdot P\left( {B|A} \right) \Rightarrow P\left( B \right) = \frac{2}{5} \cdot \frac{7}{{10}} \cdot \frac{{23}}{{14}} = \frac{{23}}{{50}}\).
Mặt khác, theo công thức xác suất toàn phần:
\[P\left( B \right) = P\left( A \right) \cdot P\left( {B|A} \right) + P\left( {\bar A} \right) \cdot P\left( {B|\bar A} \right) \Leftrightarrow \frac{{23}}{{50}} = \frac{2}{5} \cdot \frac{7}{{10}} + \frac{3}{5} \cdot P\left( {B|\bar A} \right)\]\[ \Leftrightarrow P\left( {B|\bar A} \right) = \frac{3}{{10}} = 0,3\].
Lời giải
Đáp án: 50.
Ta có diện tích rừng của thành phố \(X\) bằng \(S = \frac{{140600}}{{39,8\% }}\).
Gọi diện tích rừng trồng mới của thành phố \(X\) sau \(1\) năm là
\({u_1} = 1000 + 1000 \cdot 6\% = 1000\left( {1 + 6\% } \right)\).
Diện tích rừng trồng mới sau \(2\) năm là \({u_2} = 1000{\left( {1 + 6\% } \right)^2}\)
….
Diện tích rừng trồng mới sau \(n\) năm là \({u_n} = 1000{\left( {1 + 6\% } \right)^n}\).
Khi diện tích rừng đạt tỷ lệ \(45\% \) thì diện tích rừng khi đó phải bằng \(\frac{{S \cdot 45\% }}{{100\% }}\).
Như vậy tính từ năm \(2022\) đến năm diện tích rừng đạt tỷ lệ \(45\% \) thì diện tích rừng phải tăng bằng \(\frac{{S \cdot 45\% }}{{100\% }} - 140600\).
Khi đó ta có \({u_n} = \frac{{S \cdot 45\% }}{{100\% }} - 140600\)\( \Leftrightarrow 1000{\left( {1 + 6\% } \right)^n} = \frac{{S \cdot 45\% }}{{100\% }} - 140600\).
Ta tìm được \(n \approx 49,95\).
Vậy sau \(50\) năm tỉnh có diện tích rừng đạt tỷ lệ che phủ \(45\% \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải