Câu hỏi:

26/05/2025 42

Cho phương trình \(\frac{{\sqrt {7 - m} }}{{\sqrt {m + 3} }}{x^2} + 2\left( {m - 2} \right)x + 15 = 0,\) giá trị của m để phương trình đã cho là phương trình bậc hai một ẩn x là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Để phương trình đã cho là phương trình bậc hai ẩn x thì 7 – m ≥ 0 và, m + 3 > 0 và \(\frac{{\sqrt {7 - m} }}{{\sqrt {m + 3} }} \ne 0\)

Suy ra 7 – m > 0 và m + 3 > 0

Do đó m < 7 và m > –3 hay –3 < m < 7.

Vậy ta chọn phương án D.

</></>

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Phương trình bậc hai một ẩn là phương trình có dạng ax2 + bx + c = 0 (a ≠ 0).

Phương trình mx2 – 2(m – 1)x + m + 1 = 0 là phương trình bậc hai một ẩn khi m ≠ 0.

Câu 2

Lời giải

Đáp án đúng là: B

Phương trình bậc hai một ẩn là phương trình có dạng ax2 + bx + c = 0 (a ≠ 0).

Phương trình –20 + 2x2 = 0 hay 2x2 – 20 = 0 là phương trình bậc hai một ẩn với a = 2 ≠0, b = 0 và c = –20.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP