Cho hình chóp S.ABCD có đáy là hình bình hành. Trên cạnh SC lấy điểm M sao cho \(SM = \frac{1}{2}SC\). Mặt phẳng (P) chứa AM và song song với BD. Gọi E, F lần lượt là giao điểm của (P) với các cạnh SB, SD. Tính tỉ số \(\frac{{SE}}{{SB}} + \frac{{SF}}{{SD}}\) (kết quả làm tròn đến hàng phần mười).
Cho hình chóp S.ABCD có đáy là hình bình hành. Trên cạnh SC lấy điểm M sao cho \(SM = \frac{1}{2}SC\). Mặt phẳng (P) chứa AM và song song với BD. Gọi E, F lần lượt là giao điểm của (P) với các cạnh SB, SD. Tính tỉ số \(\frac{{SE}}{{SB}} + \frac{{SF}}{{SD}}\) (kết quả làm tròn đến hàng phần mười).
Quảng cáo
Trả lời:
Gọi O là giao điểm của AC và BD.
Ta có \(\left\{ \begin{array}{l}AM \cap SO = I\\AM \subset \left( P \right)\\SO \subset \left( {SBD} \right)\end{array} \right. \Rightarrow I \in \left( P \right) \cap \left( {SBD} \right)\).
Mà SD // (P), SD Ì (SBD) suy ra (P) Ç (SBD) = d // BD với I Î d.
Gọi E = d Ç SB, F = d Ç SD. Khi đó E, F chính là giao điểm của (P) với các cạnh SB, SD.
Xét DSAC có O là trung điểm của AC, M là trung điểm của SC nên I là trọng tâm của tam giác SAC. Suy ra \(\frac{{SI}}{{SO}} = \frac{2}{3}\).
Lại có EF // BD nên \(\frac{{SE}}{{SB}} = \frac{{SF}}{{SD}} = \frac{{SI}}{{SO}} = \frac{2}{3}\).
Suy ra \(\frac{{SE}}{{SB}} + \frac{{SF}}{{SD}} = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \approx 1,3\).
Trả lời: 1,3.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
C
Do MN là đường trung bình của tam giác SAD nên MN // AD.
Mà AD // BC (do ABCD là hình thang).
Suy ra BC // MN.
Lại có BC Ì (SBC) nên MN // (SBC).
Lời giải
A
Giả sử (α) // (β).
Một đường thẳng a song song với (β) thì a có thể nằm trên (α).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.