Câu hỏi:

30/05/2025 318 Lưu

Cho hàm số y=1x31x,khi   x<11        ,khi   x1. Hãy chọn kết luận đúng

A. \(y\) liên tục phải tại \(x = 1\).                  
B. \(y\) liên tục tại \(x = 1\). 
C. \(y\) liên tục trái tại \(x = 1\).                   
D. \(y\) liên tục trên \(\mathbb{R}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

A

Ta có: \(y\left( 1 \right) = 1\).

Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} y = 1\); \(\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{1 - {x^3}}}{{1 - x}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{\left( {1 - x} \right)\left( {1 + x + {x^2}} \right)}}{{1 - x}} = \mathop {\lim }\limits_{x \to {1^ - }} \left( {1 + x + {x^2}} \right) = 3\).

Nhận thấy: \(\mathop {\lim }\limits_{x \to {1^ + }} y = y\left( 1 \right)\). Suy ra \(y\) liên tục phải tại \(x = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hàm số liên tục tại x = 1 khi và chỉ khi \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\).

Mà f(1) = n là số hữu hạn, suy ra \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) hữu hạn nên x = 1 là nghiệm của x3 + 8x + m = 0

Þ m = −9.

Khi đó \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^3} + 8x - 9}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 9} \right)}}{{x - 1}}\)\( = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} + x + 9} \right) = 11\).

Suy ra n = 11. Vậy m + n = −9 + 11 = 2.

Trả lời: 2.

Lời giải

a) Hàm số f(x) xác định trên ℝ.

b) Ta có \(\mathop {\lim }\limits_{x \to 45} \frac{{{x^2} - 2025}}{{x - 45}} = \mathop {\lim }\limits_{x \to 45} \left( {x + 45} \right) = 90\).

c) Ta có f(20) = 65.

Ta có \(\mathop {\lim }\limits_{x \to 20} \frac{{{x^2} - 2025}}{{x - 45}} = \mathop {\lim }\limits_{x \to 20} \left( {x + 45} \right) = 65 = f\left( {20} \right)\) nên f(x) liên tục tại x = 20.

d) Với x ≠ 45 thì \(f\left( x \right) = \frac{{{x^2} - 2025}}{{x - 45}}\) hàm số xác định trên khoảng (−∞; 45) và (45; +∞).

Suy ra hàm số liên tục trên các khoảng (−∞; 45) và (45; +∞).

Do đó hàm số liên tục trên ℝ khi hàm số liên tục tại x = 45 \( \Leftrightarrow \mathop {\lim }\limits_{x \to 45} f\left( x \right) = f\left( {45} \right)\)

\( \Leftrightarrow \mathop {\lim }\limits_{x \to 45} \frac{{{x^2} - 2025}}{{x - 45}} = 2m + 4\)Û 90 = 2m + 4 Û m = 43.

Đáp án: a) Sai;    b) Đúng;    c) Đúng;    d) Sai.

Câu 3

A. (−2; −1).              
B. (−10; −2).            
C. (0; 1).
D. (−1; 0).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(f\left( x \right) = \sqrt {x - 5} \).           
B. \(f\left( x \right) = \frac{{x + 5}}{{{x^2} + 4}}\).                           
C. f(x) = cotx + 3. 
D. \(f\left( x \right) = \frac{{{x^2} + 3}}{{2 - x}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right)\) và \(\mathop {\lim }\limits_{x \to {b^ + }} f\left( x \right) = f\left( b \right)\).                        
B. \(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = f\left( a \right)\) và \(\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\). 
C. \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right)\) và \(\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\).                                               
D. \(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = f\left( a \right)\) và \(\mathop {\lim }\limits_{x \to {b^ + }} f\left( x \right) = f\left( b \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP