Câu hỏi:

30/05/2025 51 Lưu

Rút gọn biểu thức \(A = \frac{{\sqrt[3]{{{a^7}}}.{a^{\frac{{11}}{3}}}}}{{{a^4}.\sqrt[7]{{{a^{ - 5}}}}}}\) với a > 0 ta được kết quả \(A = {a^{\frac{m}{n}}}\), trong đó m, n Î ℕ* và \(\frac{m}{n}\) là phân số tối giản. Khẳng định nào sau đây đúng? 

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

A

\(A = \frac{{\sqrt[3]{{{a^7}}}.{a^{\frac{{11}}{3}}}}}{{{a^4}.\sqrt[7]{{{a^{ - 5}}}}}}\)\( = \frac{{{a^{\frac{7}{3}}}.{a^{\frac{{11}}{3}}}}}{{{a^4}.{a^{\frac{{ - 5}}{7}}}}}\)\( = \frac{{{a^6}}}{{{a^{\frac{{23}}{7}}}}}\)\( = {a^{\frac{{19}}{7}}}\).

Suy ra m = 19; n = 7. Do đó m2 – n2 = 312.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Lãi suất ngân hàng là 0,065 trong một năm.

b) Sau một năm số tiền gửi là 500(1 + 6,5%)1 = 532,5 triệu đồng.

c) Đến hết năm thứ ba, số tiền người đó có được là 500(1 + 6,5%)3 > 600 triệu đồng.

d) Sau khi rút về 100 triệu đồng và tiếp tục gửi trong vòng 2 năm tiếp theo, người đó có số tiền là

[500(1 + 6,5%)3 – 100](1 + 6,5%)2 ≈ 571,621 triệu đồng.

Đáp án: a) Sai;   b) Đúng;   c) Đúng;   d) Sai.

Lời giải

Ta có \(P = {81^x} + \sqrt[4]{{{3^x}}}.\sqrt[4]{{{{27}^x}}}\)\( = {\left( {{3^4}} \right)^x} + \sqrt[4]{{{3^x}{{.27}^x}}}\)\( = {\left( {{3^4}} \right)^x} + \sqrt[4]{{{{\left( {{3^x}} \right)}^4}}}\)\( = {5^4} + 5 = 630\).

Trả lời: 630.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP