Câu hỏi:

19/08/2025 232 Lưu

PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI

Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA ^ (ABCD). Khi đó:

a) BC ^ (SAB).

b) CD ^ (SAD).

c) AC ^ (SBD).

d) BD ^ (SAC).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA ^ (ABCD). Khi đó: (ảnh 1)

a) Vì SA ^ (ABCD) nên SA ^ BC mà BC ^ AB suy ra BC ^ (SAB).

b) Vì SA ^ (ABCD) nên SA ^ CD mà CD ^ AD suy ra CD ^ (SAD).

c) Giả sử AC ^ (SBD) Þ AC ^ SB mà SA ^ AC nên AC ^ (SAB) Þ AC ^ AB (vô lí).

d) Vì SA ^ (ABCD) nên SA ^ BD mà BD ^ AC nên BD ^ (SAC).

Đáp án: a) Đúng;   b) Đúng;   c) Sai;    d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. AB ^ (SAC).           
B. AB ^ (ABC).           
C. AB ^ (SBC).                               
D. AB ^ (SAB).

Lời giải

A

Cho hình chóp S.ABC biết SA  (ABC) và tam giác ABC vuông tại A. Đường thẳng AB vuông góc với mặt phẳng nào? 	 (ảnh 1)

Do SA ^ (ABC) Þ SA ^ AB mà AB ^ AC nên AB ^ (SAC).

Lời giải

Xác định a (kết quả làm tròn đến hàng phần mười). (ảnh 1)

Vì SA ^ (ABCD) Þ SA ^ AD Þ DSAD vuông tại A

Do đó \(SD = \sqrt {S{A^2} + A{D^2}} = \sqrt {{2^2} + {1^2}} = \sqrt 5 \).

DADC vuông cân tại D, suy ra AC = \(\sqrt {A{D^2} + C{D^2}} = \sqrt 2 \).

Vì SA ^ (ABCD) Þ SA ^ AC Þ DSAC vuông tại A.

\(SC = \sqrt {S{A^2} + A{C^2}} = \sqrt {{2^2} + {{\left( {\sqrt 2 } \right)}^2}} = \sqrt 6 \).

Do đó \(\frac{{SC}}{{SD}} = \frac{{\sqrt 6 }}{{\sqrt 5 }} \approx 1,1\).

Trả lời: 1,1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Nếu a // (P) và b ^ (P) thì a ^ b.     
B. Nếu a Ì (P) và b ^ (P) thì a ^ b.     
C. Nếu a ^ (P) và b ^ a thì b // (P) hoặc b Ì (P).     
D. Nếu a // (P) và b ^ a thì b ^ (P).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP