Câu hỏi:

31/05/2025 66

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Biết \(SA = a\sqrt 2 \) và SA vuông góc với mặt đáy. Gọi M là trung điểm của BC và H là hình chiếu vuông góc của A lên SM.

a) Đường thẳng AH vuông góc (SBC).

b) Đường thẳng SH là hình chiếu của đường thẳng SA lên mặt phẳng (SBC).

c) Độ dài đoạn thẳng AH bằng \(\frac{{6a}}{{11}}\).

d) Sin góc tạo bởi đường thẳng SA và mặt phẳng (SBC) bằng \(\frac{{\sqrt {11} }}{{33}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi M là trung điểm của BC và H là hình chiếu vuông góc của A lên SM.  a) Đường thẳng AH ^ (SBC). (ảnh 1)

a) Gọi M là trung điểm của BC và H là hình chiếu vuông góc của A lên SM.

Ta có AH ^ SM.

mặt khác BC ^ (SAM) nên BC ^ AH. Ta suy ra AH ^ (SBC).

b) Vì AH ^ (SBC) nên SH là hình chiếu của SA lên mặt phẳng (SBC).

c) Góc giữa đường thẳng SA và mặt phẳng (SBC) là góc \(\alpha = \widehat {ASH}\).

Xét tam giác SAM vuông tại A ta có \(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{M^2}}} = \frac{1}{{{{\left( {a\sqrt 2 } \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}} = \frac{{11}}{{6{a^2}}}\).

Suy ra \(A{H^2} = \frac{{6{a^2}}}{{11}} \Rightarrow AH = \frac{{a\sqrt {66} }}{{11}}\).

d) Xét DSAH vuông tại H ta có \[\sin \widehat {ASH} = \frac{{AH}}{{SA}} = \frac{{\frac{{a\sqrt {66} }}{{11}}}}{{a\sqrt 2 }} = \frac{{\sqrt {33} }}{{11}}\].

Đáp án: a) Đúng;   b) Đúng;    c) Sai;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) cạnh \(a\), SA vuông góc với đáy và \(SA = a\sqrt 3 \). Góc giữa đường thẳng \(SD\) và mặt phẳng \((ABCD)\)bằng:    

Lời giải

C

V (ảnh 1)

\(SA \bot ABCD\)nên góc giữa đường thẳng \(SD\) và mặt phẳng \((ABCD)\)là góc \(\widehat {SDA}\).

Trong tam giác vuông \(SDA\) ta có: \(\tan \widehat {SDA} = \frac{{SA}}{{AD}} = \sqrt 3 \Rightarrow \widehat {SDA} = 60^\circ \).

Lời giải

B

Góc giữa đường thẳng \(SC\)và mặt phẳng \[\left( {ABC} \right)\] là góc \(\widehat {SCA}\).

Tam giác \(SAC\) vuông cân tại \(A\) nên góc \(\widehat {SCA} = 45^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho hình chóp \(S.ABC\) có cạnh \(SA\) vuông góc với đáy. Góc giữa đường thẳng \(SB\) và mặt phẳng đáy là góc giữa hai đường thẳng nào dưới đây?     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay