Cho hình chóp \(S.ABCD\) có đáy là hình thoi cạnh \(a,\widehat {BAD} = 120,SA \bot (ABCD)\) và \(SA = \sqrt 3 a\). Góc giữa đường thẳng \(SC\) và mặt phẳng \((SAD)\) bằng bao nhiêu độ (kết quả làm tròn đến hàng phần mười)?
Cho hình chóp \(S.ABCD\) có đáy là hình thoi cạnh \(a,\widehat {BAD} = 120,SA \bot (ABCD)\) và \(SA = \sqrt 3 a\). Góc giữa đường thẳng \(SC\) và mặt phẳng \((SAD)\) bằng bao nhiêu độ (kết quả làm tròn đến hàng phần mười)?
Quảng cáo
Trả lời:

Xét \(\Delta ADC\) cân tại \(D\), có \(\widehat {{\mkern 1mu} D{\mkern 1mu} } = 60^\circ \) nên \(\Delta ADC\) đều.
Kẻ \(CI \bot AD\)
Ta có: \(CI \bot SA \Rightarrow CI \bot (SAD)\) \( \Rightarrow SI\) là hình chiếu của \(SC\) trên \((SAD)\)
\( \Rightarrow (SC,(SAD)) = (SC,SI) = \widehat {CSI}\)
Ta có: \(SI = \sqrt {S{A^2} + A{I^2}} = \sqrt {{{\left( {a\sqrt 3 } \right)}^2} + {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{\sqrt {13} }}{2}a\)
Xét \(\Delta SCI\) vuông tại \(I:\tan \widehat {CSI} = \frac{{IC}}{{SI}} = \frac{{\frac{{\sqrt 3 a}}{2}}}{{\frac{{a\sqrt {13} }}{2}}} = \frac{{\sqrt {39} }}{{13}} \Rightarrow \widehat {CSI} \approx 25,6^\circ \).
Trả lời: 25,6.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
C

Vì \(SA \bot ABCD\)nên góc giữa đường thẳng \(SD\) và mặt phẳng \((ABCD)\)là góc \(\widehat {SDA}\).
Trong tam giác vuông \(SDA\) ta có: \(\tan \widehat {SDA} = \frac{{SA}}{{AD}} = \sqrt 3 \Rightarrow \widehat {SDA} = 60^\circ \).
Lời giải

a) Gọi M là trung điểm của BC và H là hình chiếu vuông góc của A lên SM.
Ta có AH ^ SM.
mặt khác BC ^ (SAM) nên BC ^ AH. Ta suy ra AH ^ (SBC).
b) Vì AH ^ (SBC) nên SH là hình chiếu của SA lên mặt phẳng (SBC).
c) Góc giữa đường thẳng SA và mặt phẳng (SBC) là góc \(\alpha = \widehat {ASH}\).
Xét tam giác SAM vuông tại A ta có \(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{M^2}}} = \frac{1}{{{{\left( {a\sqrt 2 } \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}} = \frac{{11}}{{6{a^2}}}\).
Suy ra \(A{H^2} = \frac{{6{a^2}}}{{11}} \Rightarrow AH = \frac{{a\sqrt {66} }}{{11}}\).
d) Xét DSAH vuông tại H ta có \[\sin \widehat {ASH} = \frac{{AH}}{{SA}} = \frac{{\frac{{a\sqrt {66} }}{{11}}}}{{a\sqrt 2 }} = \frac{{\sqrt {33} }}{{11}}\].
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
