Cho hình chóp S.ABC có SA vuông góc với đáy, hai mặt phẳng (SAB) và (SBC) vuông góc với nhau, \(SB = a\sqrt 3 \), góc giữa SC và (SAB) là 45° và \(\widehat {ASB} = 30^\circ \).
a) Mặt phẳng (SAB) vuông góc với mặt phẳng (ABC).
b) Tam giác SBC vuông cân tại C.
c) Hai đường thẳng AB và CB vuông góc với nhau.
d) Nếu gọi thể tích khối chóp S.ABC là V thì tỷ số \(\frac{{{a^3}}}{V}\) bằng \(\frac{3}{8}\).
Cho hình chóp S.ABC có SA vuông góc với đáy, hai mặt phẳng (SAB) và (SBC) vuông góc với nhau, \(SB = a\sqrt 3 \), góc giữa SC và (SAB) là 45° và \(\widehat {ASB} = 30^\circ \).
a) Mặt phẳng (SAB) vuông góc với mặt phẳng (ABC).
b) Tam giác SBC vuông cân tại C.
c) Hai đường thẳng AB và CB vuông góc với nhau.
d) Nếu gọi thể tích khối chóp S.ABC là V thì tỷ số \(\frac{{{a^3}}}{V}\) bằng \(\frac{3}{8}\).
Quảng cáo
Trả lời:

a) Theo giả thiết, DSAB vuông tại A có \(SB = a\sqrt 3 ;\widehat {ASB} = 30^\circ \).
Khi đó \(SA = SB.\cos 30^\circ = \frac{{3a}}{2}\) và \(AB = SB.\sin 30^\circ = \frac{{a\sqrt 3 }}{2}\).
Do SA ^ (ABC) nên (SAB) ^ (ABC).
b) Vì (SAB) ^ (ABC) và (SAB) ^ (SBC) nên (SBC) ^ (ABC) .
Suy ra BC ^ (SAB) Þ (SC, (SAB)) = (SC, SB) = \(\widehat {CSB} = 45^\circ \).
Suy ra DSBC vuông cân tại B Þ BC = SB = \(a\sqrt 3 \).
c) BC ^ (SAB) Þ CB ^ AB Þ DABC vuông tại B.
d) Có \({S_{\Delta ABC}} = \frac{1}{2}AB.BC = \frac{{3{a^2}}}{4}\) và \(V = \frac{1}{3}SA.{S_{\Delta ABC}} = \frac{{3{a^3}}}{8}\).
Vậy tỉ số \(\frac{{{a^3}}}{V} = \frac{8}{3}\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Đặt \(AB = x,\left( {x > 0} \right)\), gọi \(M\) là trung điểm \(BC\).
Vì DABC đều Þ AM ^ BC và AA' ^ BC Þ BC ^ (AA'M) Þ BC ^ A'M.
Ta có \[\left\{ \begin{array}{l}\left( {A'BC} \right) \cap \left( {ABC} \right) = BC\\AM \bot BC\\A'M \bot BC\end{array} \right. \Rightarrow \left( {\left( {A'BC} \right),\left( {ABC} \right)} \right) = \widehat {A'MA} = 30^\circ \].
Xét \(\Delta A'AM\), có \[A'M = \frac{{AM}}{{cos30^\circ }} = \frac{{x\sqrt 3 }}{2}.\frac{2}{{\sqrt 3 }} = x\].
\({S_{A'BC}} = 8 \Leftrightarrow \frac{1}{2}A'M.BC = 8 \Leftrightarrow {x^2} = 16 \Rightarrow x = 4\)
Suy ra \(A'A = AM.\tan 30^\circ = \frac{{4.\sqrt 3 }}{2}.\frac{1}{{\sqrt 3 }} = 2\); \({S_{ABC}} = \frac{{16.\sqrt 3 }}{4} = 4\sqrt 3 \).
Vậy \({V_{ABC.A'B'C'}} = A'A.{S_{ABC}} = 2.4\sqrt 3 = 8\sqrt 3 \approx 13,9\).
Trả lời: 13,9.
Lời giải
Thể tích khối rubik là V = 63 = 216 (cm3).
Trả lời: 216.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.