Cho lăng trụ đều \(ABC.A'B'C'\). Biết rằng góc giữa \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) là \(30^\circ \), tam giác \(A'BC\) có diện tích bằng \(8\). Tính thể tích khối lăng trụ \(ABC.A'B'C'\) (kết quả làm tròn đến hàng phần mười).
                                    
                                                                                                                        Cho lăng trụ đều \(ABC.A'B'C'\). Biết rằng góc giữa \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) là \(30^\circ \), tam giác \(A'BC\) có diện tích bằng \(8\). Tính thể tích khối lăng trụ \(ABC.A'B'C'\) (kết quả làm tròn đến hàng phần mười).
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    
Đặt \(AB = x,\left( {x > 0} \right)\), gọi \(M\) là trung điểm \(BC\).
Vì DABC đều Þ AM ^ BC và AA' ^ BC Þ BC ^ (AA'M) Þ BC ^ A'M.
Ta có \[\left\{ \begin{array}{l}\left( {A'BC} \right) \cap \left( {ABC} \right) = BC\\AM \bot BC\\A'M \bot BC\end{array} \right. \Rightarrow \left( {\left( {A'BC} \right),\left( {ABC} \right)} \right) = \widehat {A'MA} = 30^\circ \].
Xét \(\Delta A'AM\), có \[A'M = \frac{{AM}}{{cos30^\circ }} = \frac{{x\sqrt 3 }}{2}.\frac{2}{{\sqrt 3 }} = x\].
\({S_{A'BC}} = 8 \Leftrightarrow \frac{1}{2}A'M.BC = 8 \Leftrightarrow {x^2} = 16 \Rightarrow x = 4\)
Suy ra \(A'A = AM.\tan 30^\circ = \frac{{4.\sqrt 3 }}{2}.\frac{1}{{\sqrt 3 }} = 2\); \({S_{ABC}} = \frac{{16.\sqrt 3 }}{4} = 4\sqrt 3 \).
Vậy \({V_{ABC.A'B'C'}} = A'A.{S_{ABC}} = 2.4\sqrt 3 = 8\sqrt 3 \approx 13,9\).
Trả lời: 13,9.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Thể tích khối rubik là V = 63 = 216 (cm3).
Trả lời: 216.
Lời giải

a) Theo giả thiết, DSAB vuông tại A có \(SB = a\sqrt 3 ;\widehat {ASB} = 30^\circ \).
Khi đó \(SA = SB.\cos 30^\circ = \frac{{3a}}{2}\) và \(AB = SB.\sin 30^\circ = \frac{{a\sqrt 3 }}{2}\).
Do SA ^ (ABC) nên (SAB) ^ (ABC).
b) Vì (SAB) ^ (ABC) và (SAB) ^ (SBC) nên (SBC) ^ (ABC) .
Suy ra BC ^ (SAB) Þ (SC, (SAB)) = (SC, SB) = \(\widehat {CSB} = 45^\circ \).
Suy ra DSBC vuông cân tại B Þ BC = SB = \(a\sqrt 3 \).
c) BC ^ (SAB) Þ CB ^ AB Þ DABC vuông tại B.
d) Có \({S_{\Delta ABC}} = \frac{1}{2}AB.BC = \frac{{3{a^2}}}{4}\) và \(V = \frac{1}{3}SA.{S_{\Delta ABC}} = \frac{{3{a^3}}}{8}\).
Vậy tỉ số \(\frac{{{a^3}}}{V} = \frac{8}{3}\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
 Nhắn tin Zalo
 Nhắn tin Zalo