Câu hỏi:
31/05/2025 73
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và SA ^ (ABCD). Biết rằng \(SA = \frac{{a\sqrt 6 }}{3}\). Tính góc giữa SC và (ABCD).
Quảng cáo
Trả lời:
A
Vì SA ^ (ABCD) nên AC là hình chiếu vuông góc của SC trên mặt phẳng (ABCD).
Do đó (SC, (ABCD)) = (SC, AC) = \(\widehat {SCA}\).
Ta có \(AC = \sqrt {A{B^2} + B{C^2}} = a\sqrt 2 \).
Xét tam giác vuông SAC có \(\tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{{\frac{{a\sqrt 6 }}{3}}}{{a\sqrt 2 }} = \frac{{\sqrt 3 }}{3} \Rightarrow \widehat {SCA} = 30^\circ \).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi I, J lần lượt là trung điểm của AB' và CD'.
Suy ra J là trung điểm của DC'. Do đó IJ // AD và IJ = AD = 4 (1).
Lại có AD ^ DD' và AD ^ DC Þ AD ^ (DD'C'C) Þ AD ^ CD' (2).
Tương tự AD ^ AB' (3).
Từ (1), (2), (3) ta có IJ là đoạn vuông góc chung của hai đường thẳng AB' và CD'.
Vậy khoảng cách giữa hai đường thẳng AB' và CD' bằng 4.
Trả lời : 4.
Lời giải
C
Ta có BC ^ AM và BC ^ SA Þ BC ^ (SAM) Þ BC ^ SM.
Vậy [S, BC, A] = \(\widehat {SMA}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.