Câu hỏi:

31/05/2025 436

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 4. Tính khoảng cách giữa hai đường thẳng AB' và CD'.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 4. Tính khoảng cách giữa hai đường thẳng AB' và CD'. (ảnh 1)

Gọi I, J lần lượt là trung điểm của AB' và CD'.

Suy ra J là trung điểm của DC'. Do đó IJ // AD và IJ = AD = 4 (1).

Lại có AD ^ DD' và AD ^ DC Þ AD ^ (DD'C'C) Þ AD ^ CD' (2).

Tương tự AD ^ AB' (3).

Từ (1), (2), (3) ta có IJ là đoạn vuông góc chung của hai đường thẳng AB' và CD'.

Vậy khoảng cách giữa hai đường thẳng AB' và CD' bằng 4.

Trả lời : 4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

C

Cho hình chóp S.ABC có đáy ABC là tam giác đều, gọi M là trung điểm BC. Biết cạnh bên SA vuông góc với đáy. Góc phẳng nhị diện [S, BC, A] là góc nào dưới đây? 	 (ảnh 1)

Ta có BC ^ AM và BC ^ SA Þ BC ^ (SAM) Þ BC ^ SM.

Vậy [S, BC, A] = \(\widehat {SMA}\).

Câu 2

Lời giải

A

Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai đường thẳng BA' và CD bằng  	 (ảnh 1)

Vì CD // AB nên (BA', CD) = (BA', BA) = \(\widehat {ABA'} = 45^\circ \) (do ABB'A' là hình vuông).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP