Câu hỏi:
31/05/2025 22Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, cạnh AC = a, các cạnh bên \(SA = SB = SC = \frac{{a\sqrt 6 }}{2}\). Gọi H là trung điểm của BC. Khi đó:
a) Đường thẳng SH là chiều cao của khối chóp S.ABC.
b) Thể tích khối chóp S.ABC bằng \(\frac{{{a^3}}}{2}\).
c) Số đo của góc nhị diện [S, AB, C] lớn hơn 65°.
d) Khoảng cách từ điểm C đến mặt phẳng (SAB) bằng \(\frac{{2a}}{{\sqrt 5 }}\).
Quảng cáo
Trả lời:
a) Vì H là trung điểm của BC \( \Rightarrow HA = HB = HC = \frac{1}{2}BC = \frac{1}{2}a\sqrt 2 \).
Mà SA = SB = SC = \(\frac{{a\sqrt 6 }}{2}\) nên SH ^ BC.
Suy ra SH ^ (ABC).
Vậy SH là chiều cao của khối chóp S.ABC.
b) Có \(SH = \sqrt {S{C^2} - H{C^2}} = \sqrt {{{\left( {\frac{{a\sqrt 6 }}{2}} \right)}^2} - {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}} = a\).
Suy ra \({V_{S.ABC}} = \frac{1}{3}SH.\frac{1}{2}AB.AC = \frac{1}{3}a.\left( {\frac{1}{2}a.a} \right) = \frac{{{a^3}}}{6}\).
c) Ta có số đo [S, AB, C] bằng số đo [S, AB, H].
Kẻ AI ^ AB mà AB ^ SH (vì SH ^ (ABC)) Þ AB ^ (SHI) Þ AB ^ SI.
Do đó \(\widehat {SIH}\) là góc phẳng nhị diện của góc nhị diện [S, AB, H].
Ta có \(HI = \frac{1}{2}AB = \frac{1}{2}AC = \frac{1}{2}a\) (do tam giác ABH vuông cân tại H).
Trong tam giác vuông SIH, ta có \(\tan \widehat {SIH} = \frac{{SH}}{{IH}} = \frac{a}{{\frac{1}{2}a}} = 2 \Rightarrow \widehat {SIH} \approx 63^\circ 26'\).
d)
Ta có H là trung điểm của BC nên d(C, (SAB)) = 2d(H, (SAB)).
Kẻ HK ^ SI thì HK ^ (SAB) suy ra d(H, (SAB)) = HK.
Trong tam giác vuông SIH, ta có \(\frac{1}{{H{K^2}}} = \frac{1}{{S{H^2}}} + \frac{1}{{H{I^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{{\left( {\frac{a}{2}} \right)}^2}}} = \frac{5}{{{a^2}}} \Rightarrow HK = \frac{a}{{\sqrt 5 }}\).
Suy ra \(d\left( {C,\left( {SAB} \right)} \right) = 2HK = \frac{{2a}}{{\sqrt 5 }}\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi I, J lần lượt là trung điểm của AB' và CD'.
Suy ra J là trung điểm của DC'. Do đó IJ // AD và IJ = AD = 4 (1).
Lại có AD ^ DD' và AD ^ DC Þ AD ^ (DD'C'C) Þ AD ^ CD' (2).
Tương tự AD ^ AB' (3).
Từ (1), (2), (3) ta có IJ là đoạn vuông góc chung của hai đường thẳng AB' và CD'.
Vậy khoảng cách giữa hai đường thẳng AB' và CD' bằng 4.
Trả lời : 4.
Lời giải
C
Ta có BC ^ AM và BC ^ SA Þ BC ^ (SAM) Þ BC ^ SM.
Vậy [S, BC, A] = \(\widehat {SMA}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
Bài tập Tổ hợp - Xác suất cơ bản, nâng cao có lời giải chi tiết (P6)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận