Cho \(y = \sqrt {2x - {x^2}} \), tính giá trị biểu thức \(A = {y^3}.y''\).
Quảng cáo
Trả lời:

C
Ta có: \(y' = \frac{{1 - x}}{{\sqrt {2x - {x^2}} }},\,\,\,y'' = \frac{{ - 1}}{{{{\left( {\sqrt {2x - {x^2}} } \right)}^3}}}\)
Do đó: \(A = {y^3}.y'' = - 1\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
B
Ta có v(t) = s'(t) = −3t2 + 2t + 1; a(t) = v'(t) = −6t + 2.
Ta có v(t) = −3t2 + 2t + 1 = \( - 3{\left( {t - \frac{1}{3}} \right)^2} + \frac{4}{3} \le \frac{4}{3}\).
Vận tốc đạt giá trị lớn nhất khi \(t = \frac{1}{3}\).
Do đó \(a\left( {\frac{1}{3}} \right) = - 6.\frac{1}{3} + 2 = 0\).
Lời giải
Ta có v(t) = s'(t) = 3t2 + 2mt; a(t) = v'(t) = 6t + 2m.
Ta có v(10) = 0 Û 3.102 + 20m = 0 Û m = −15.
Khi đó a(t) = 6t – 30. Khi đó a(2) = 6.2 – 30 = −18.
Trả lời: −18.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.