Câu hỏi:

16/06/2025 67 Lưu

Tính tích tất cả các nghiệm của phương trình \(4 \cdot \,3{\,^{\log \left( {100{x^2}} \right)}} + 9 \cdot {4^{\log \left( {10x} \right)}} = 13 \cdot \,{6^{1 + \log x}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

ĐKXĐ: \(x > 0\).

Đặt \(t = \log x\), phương trình đã cho trở thành\(\,\,4 \cdot \,3{\,^{2 + 2t}} + 9 \cdot \,{4^{1 + t}} = 13 \cdot \,{6^{1 + t}}\)

\( \Leftrightarrow \,\,4 \cdot 9{\,^{1 + t}} + 9 \cdot {4^{1 + t}} = 13 \cdot \,{6^{1 + t}}\)\[ \Leftrightarrow \,\,4 \cdot \,{\left( {\frac{9}{4}} \right)^{1 + t}} + 9 - 13 \cdot \,{\left( {\frac{6}{4}} \right)^{1 + t}} = 0\].

Đặt \(u = {\left( {\frac{3}{2}} \right)^{t + 1}}\), \(u > 0\), ta được \(4{u^2} - 13u + 9 = 0\)\( \Leftrightarrow \,u = 1\,;\,u = \frac{9}{4}\) (nhận).

Với \(u = 1 \Leftrightarrow \,{\left( {\frac{3}{2}} \right)^{t + 1}} = 1\)\( \Leftrightarrow \,\,t = - 1\,\, \Leftrightarrow \,\log \,x\, = - 1\, \Leftrightarrow x = \frac{1}{{10}}\) (thỏa mãn).

Với \(u = \frac{9}{4} \Leftrightarrow {\left( {\frac{3}{2}} \right)^{t + 1}} = \frac{9}{4} \Leftrightarrow t\, = 1\,\)\( \Leftrightarrow \,\,\log x = 1 \Leftrightarrow x = 10\) (thỏa mãn).

Vậy tích hai nghiệm bằng \(1\).

Đáp án: \(1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\sin \left( {{\rm{cos}}x} \right) = 0 \Leftrightarrow {\rm{cos}}x = k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

1cosx11kπ11πk1πkk=0.

 cosx=0x=π2+mπ  mx1;20211π12m2021π12

mm0;1;2;...;642 \( \Rightarrow \)\(643\) nghiệm thỏa mãn bài toán.

Đáp án: \(643\).

Câu 2

A. \(2\pi \).             
B. \(\pi \).               
C. \(\frac{\pi }{3}\).                          
D. \(\frac{{2\pi }}{3}\).

Lời giải

Ta có \[\sin x = \sin \frac{\pi }{6} \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi \\x = \frac{{5\pi }}{6} + k2\pi \end{array} \right.,k \in \mathbb{Z}\].

\[x \in \left[ {0;\pi } \right] \Rightarrow \left[ \begin{array}{l}x = \frac{\pi }{6}\\x = \frac{{5\pi }}{6}\end{array} \right. \Rightarrow \frac{\pi }{6} + \frac{{5\pi }}{6} = \pi \]. Chọn B.

Câu 4

A. \(\left( {2; + \infty } \right)\).           
B. \(\left( { - \infty ;2} \right)\).              
C. \(\left( { - \infty ;2} \right]\).                     
D. \(\left[ {2; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(4\pi \).             
B. \(5\pi \).             
C. \(3\pi \).
D. \(2\pi \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[1\].                   
B. \[2\].                   
C. \[0\].                             
D. \[3\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(x = \frac{{11}}{8}\).                         
B. \(x = \frac{4}{3}\).            
C. \(x = \frac{1}{8}\).            
D. \(x = \frac{8}{{11}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP