Câu hỏi:

16/06/2025 328 Lưu

PHẦN I. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Tất cả các nghiệm của phương trình \(2\cos \left( {x + \frac{\pi }{4}} \right) - \sqrt 2  = 0\) là 

A. \[\left[ \begin{array}{l}x = k2\pi \\x =  - \frac{\pi }{2} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\].                    
B. \[\left[ \begin{array}{l}x = k\pi \\x =  - \frac{\pi }{2} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\]. 
C. \[\left[ \begin{array}{l}x = k\pi \\x =  - \frac{\pi }{2} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\].                     
D. \[\left[ \begin{array}{l}x = k2\pi \\x = \frac{\pi }{2} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(2\cos \left( {x + \frac{\pi }{4}} \right) - \sqrt 2 = 0 \Leftrightarrow \)\(\cos \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2} \Leftrightarrow \cos \left( {x + \frac{\pi }{4}} \right) = \cos \frac{\pi }{4}\)

\[ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{4} = \frac{\pi }{4} + k2\pi \\x + \frac{\pi }{4} = - \frac{\pi }{4} + k2\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right) \Leftrightarrow \left[ \begin{array}{l}x = k2\pi \\x = - \frac{\pi }{2} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\]. Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\left[ \begin{array}{l}x =  - \frac{\pi }{9} + k\pi \\x =  - \frac{{2\pi }}{3} - k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\].    
B. \[\left[ \begin{array}{l}x =  - \frac{\pi }{9} + k2\pi \\x =  - \frac{{2\pi }}{3} - k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\].     
C. \[\left[ \begin{array}{l}x =  - \frac{\pi }{9} + k\frac{{2\pi }}{3}\\x =  - \frac{{2\pi }}{3} - k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\].                    
D. \[\left[ \begin{array}{l}x = \frac{\pi }{9} + k\frac{{2\pi }}{3}\\x = \frac{{2\pi }}{3} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\].

Lời giải

Ta có \[\sin \left( {x + \frac{\pi }{3}} \right) + \sin 2x = 0 \Leftrightarrow \sin \left( {x + \frac{\pi }{3}} \right) = - \sin 2x \Leftrightarrow \sin \left( {x + \frac{\pi }{3}} \right) = \sin \left( { - 2x} \right)\]

\[ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{3} = - 2x + k2\pi \\x + \frac{\pi }{3} = \pi + 2x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{9} + k\frac{{2\pi }}{3}\\x = - \frac{{2\pi }}{3} - k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\]. Chọn C.

Lời giải

Ta có \({\left( {1 + \sqrt 2 } \right)^{2 - 4x}} \le {\left( {3 + 2\sqrt 2 } \right)^{\sqrt {{x^2} + 1} }}\)\( \Leftrightarrow {\left( {1 + \sqrt 2 } \right)^{2 - 4x}} \le {\left( {1 + \sqrt 2 } \right)^{2\sqrt {{x^2} + 1} }}\)

\( \Leftrightarrow 2\sqrt {{x^2} + 1} \ge 2 - 4x \Leftrightarrow \sqrt {{x^2} + 1} \ge 1 - 2x \Leftrightarrow \left[ \begin{array}{l}1 - 2x < 0\\\left\{ \begin{array}{l}1 - 2x \ge 0\\{x^2} + 1 \ge {\left( {1 - 2x} \right)^2}\end{array} \right.\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x > \frac{1}{2}\\\left\{ \begin{array}{l}x \le \frac{1}{2}\\3{x^2} - 4x \le 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x > \frac{1}{2}\\\left\{ \begin{array}{l}x \le \frac{1}{2}\\0 \le x \le \frac{4}{3}\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x > \frac{1}{2}\\0 \le x \le \frac{1}{2}\end{array} \right. \Leftrightarrow x \ge 0\).

Vậy bất phương trình có nghiệm \(x \ge 0\).

\(x \in \left( { - 2024;2025} \right),\,x \in \mathbb{Z}\) nên \(x \in \left\{ {0\,;\,1\,;\,2\,;\,...;\,2024} \right\}\).

Đáp án: \(2\,025\).

Câu 3

A. \(\left( { - \infty ;\frac{1}{2}} \right]\).                     
B. \(\left( { - \frac{1}{2}; + \infty } \right)\).                     
C. \(\left( { - \frac{1}{2};\frac{1}{2}} \right]\).                     
D. \(\left( { - \infty ;\frac{1}{2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(x = {\log _2}5\).                                 
B. \(x = {\log _5}2\).
C. \(x = \sqrt 5 \).
D. \(x = \frac{5}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(m \in \left( { - 5;0} \right)\).                                                           
B. \(m \in \left[ { - 5;0} \right]\). 
C. \(m \in \left( { - \infty ; - 5} \right) \cup \left( {0; + \infty } \right)\).                  
D. \(m \in \left( { - \infty ; - 5} \right] \cup \left[ {0; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP