Câu hỏi:
16/06/2025 43
Có bao nhiêu giá trị nguyên của \(x\) thuộc khoảng \(\left( { - 2024;2025} \right)\) thỏa mãn bất phương trình \({\left( {1 + \sqrt 2 } \right)^{2 - 4x}} \le {\left( {3 + 2\sqrt 2 } \right)^{\sqrt {{x^2} + 1} }}\)?
Có bao nhiêu giá trị nguyên của \(x\) thuộc khoảng \(\left( { - 2024;2025} \right)\) thỏa mãn bất phương trình \({\left( {1 + \sqrt 2 } \right)^{2 - 4x}} \le {\left( {3 + 2\sqrt 2 } \right)^{\sqrt {{x^2} + 1} }}\)?
Quảng cáo
Trả lời:
Ta có \({\left( {1 + \sqrt 2 } \right)^{2 - 4x}} \le {\left( {3 + 2\sqrt 2 } \right)^{\sqrt {{x^2} + 1} }}\)\( \Leftrightarrow {\left( {1 + \sqrt 2 } \right)^{2 - 4x}} \le {\left( {1 + \sqrt 2 } \right)^{2\sqrt {{x^2} + 1} }}\)
\( \Leftrightarrow 2\sqrt {{x^2} + 1} \ge 2 - 4x \Leftrightarrow \sqrt {{x^2} + 1} \ge 1 - 2x \Leftrightarrow \left[ \begin{array}{l}1 - 2x < 0\\\left\{ \begin{array}{l}1 - 2x \ge 0\\{x^2} + 1 \ge {\left( {1 - 2x} \right)^2}\end{array} \right.\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x > \frac{1}{2}\\\left\{ \begin{array}{l}x \le \frac{1}{2}\\3{x^2} - 4x \le 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x > \frac{1}{2}\\\left\{ \begin{array}{l}x \le \frac{1}{2}\\0 \le x \le \frac{4}{3}\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x > \frac{1}{2}\\0 \le x \le \frac{1}{2}\end{array} \right. \Leftrightarrow x \ge 0\).
Vậy bất phương trình có nghiệm \(x \ge 0\).
Mà \(x \in \left( { - 2024;2025} \right),\,x \in \mathbb{Z}\) nên \(x \in \left\{ {0\,;\,1\,;\,2\,;\,...;\,2024} \right\}\).
Đáp án: \(2\,025\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Điều kiện xác định: \(2x + 1 > 0 \Leftrightarrow x > - \frac{1}{2}\).
Ta có \({\rm{lo}}{{\rm{g}}_2}\left( {2x + 1} \right) \le 1 \Leftrightarrow 2x + 1 \le 2 \Leftrightarrow 2x \le 1 \Leftrightarrow x \le \frac{1}{2}\).
Kết hợp với điều kiện ta được: \( - \frac{1}{2} < x \le \frac{1}{2}\).
Vậy tập nghiệm của bất phương trình là \(\left( { - \frac{1}{2};\frac{1}{2}} \right]\). Chọn C.
Lời giải
Ta có \[\sin \left( {x + \frac{\pi }{3}} \right) + \sin 2x = 0 \Leftrightarrow \sin \left( {x + \frac{\pi }{3}} \right) = - \sin 2x \Leftrightarrow \sin \left( {x + \frac{\pi }{3}} \right) = \sin \left( { - 2x} \right)\]
\[ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{3} = - 2x + k2\pi \\x + \frac{\pi }{3} = \pi + 2x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{9} + k\frac{{2\pi }}{3}\\x = - \frac{{2\pi }}{3} - k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\]. Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.