Giả sử trong một ngày độ sâu \(d\left( t \right) \,({\rm{m)}}\) của một cảng biển sau \(t\) giờ kể từ lúc nửa đêm được tính bởi công thức \(d\left( t \right) = {\cos ^2}\left( {\frac{{\pi t}}{6}} \right) + 2\cos \left( {\frac{{\pi t}}{6}} \right) + 8 \left( {\rm{m}} \right)\), \(0 \le t \le 24\). Trong một ngày có bao nhiêu lần độ sâu của cảng biển đạt mức thấp nhất?
Giả sử trong một ngày độ sâu \(d\left( t \right) \,({\rm{m)}}\) của một cảng biển sau \(t\) giờ kể từ lúc nửa đêm được tính bởi công thức \(d\left( t \right) = {\cos ^2}\left( {\frac{{\pi t}}{6}} \right) + 2\cos \left( {\frac{{\pi t}}{6}} \right) + 8 \left( {\rm{m}} \right)\), \(0 \le t \le 24\). Trong một ngày có bao nhiêu lần độ sâu của cảng biển đạt mức thấp nhất?
Quảng cáo
Trả lời:
Ta có \(d\left( t \right) = {\left[ {\cos \left( {\frac{{\pi t}}{6}} \right) + 1} \right]^2} + 7\) nên \(d\left( t \right)\) bé nhất khi \(\cos \left( {\frac{{\pi t}}{6}} \right) + 1 = 0 \Leftrightarrow \cos \left( {\frac{{\pi t}}{6}} \right) = - 1\)
Mà \(0 \le t \le 24\) nên \(0 \le 6 + 12k \le 24 \Leftrightarrow - \frac{1}{2} \le k \le \frac{3}{2}\), suy ra \(k = 0\) hoặc \(k = 1\).
Vậy có độ sâu của cảng biển đạt thấp nhất tại 2 thời điểm trong một ngày.
Đáp án: \(2\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(2\cos \left( {x + \frac{\pi }{4}} \right) - \sqrt 2 = 0 \Leftrightarrow \)\(\cos \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2} \Leftrightarrow \cos \left( {x + \frac{\pi }{4}} \right) = \cos \frac{\pi }{4}\)
\[ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{4} = \frac{\pi }{4} + k2\pi \\x + \frac{\pi }{4} = - \frac{\pi }{4} + k2\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right) \Leftrightarrow \left[ \begin{array}{l}x = k2\pi \\x = - \frac{\pi }{2} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\]. Chọn A.
Lời giải
Ta có \[\sin \left( {x + \frac{\pi }{3}} \right) + \sin 2x = 0 \Leftrightarrow \sin \left( {x + \frac{\pi }{3}} \right) = - \sin 2x \Leftrightarrow \sin \left( {x + \frac{\pi }{3}} \right) = \sin \left( { - 2x} \right)\]
\[ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{3} = - 2x + k2\pi \\x + \frac{\pi }{3} = \pi + 2x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{9} + k\frac{{2\pi }}{3}\\x = - \frac{{2\pi }}{3} - k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\]. Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.