Câu hỏi:

16/06/2025 73

PHẦN I. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Trong các dãy số \[\left( {{u_n}} \right)\] cho bởi công thức số hạng tổng quát \[{u_n}\] sau, dãy số nào là một cấp số nhân?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét dãy số \[\left( {{u_n}} \right)\] với \({u_n} = 5 \cdot {2^n}\). Ta có \[\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{5 \cdot {2^{n + 1}}}}{{5 \cdot {2^n}}} = 2\] không đổi với mọi \(n\).

Vậy \[\left( {{u_n}} \right)\] với \({u_n} = 5 \cdot {2^n}\) là một cấp số nhân. Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Gọi \({u_1},\,\,q\) là số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\) đã cho.

Ta có \({u_2} = {u_1}q,\,\,{u_6} = {u_1}{q^5}\) nên \(\frac{{{u_6}}}{{{u_2}}} = \frac{{{q^5}}}{q} \Leftrightarrow {q^4} = 16 \Rightarrow q = \pm 2 \Rightarrow {u_1} = \frac{4}{{ \pm 2}} = \pm 2\).

\( \Rightarrow \left[ \begin{array}{l}{u_n} = - 2 \cdot {\left( { - 2} \right)^{n - 1}}\\{u_n} = 2 \cdot {2^{n - 1}}\end{array} \right. \Rightarrow \left[ \begin{array}{l}{u_n} = {\left( { - 2} \right)^n}\\{u_n} = {2^n}\end{array} \right..\) Chọn A.

Câu 2

Lời giải

Ta có \(d = {u_4} - {u_3} = 2 - \left( { - 1} \right) = 3.\) Chọn C.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP