Câu hỏi:
17/06/2025 4Cho hàm số bậc ba \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\,\,\left( {a \ne 0} \right)\) có đồ thị như hình vẽ.
a) Hàm số đã cho có hai cực trị trái dấu. b) \(f\left( 5 \right) = 52\). c) Gọi \(d\) là đường thẳng đi qua các điểm cực trị của đồ thị hàm số \(y = f\left( x \right)\). Khoảng cách từ điểm \(O\) đến đường thẳng \(d\) bằng \(\frac{2}{5}\). d) Hàm số \(g\left( x \right) = f\left( x \right) - \left( {3x - 2{x^3}} \right)\) đạt cực tiểu tại \(x = - 1\). |
|
Quảng cáo
Trả lời:
Tập xác định của hàm số \(y = f\left( x \right)\) là \[D = \mathbb{R}\].
Từ đồ thị, ta thấy hàm số đạt cực đại tại \(x = 0\), ; đạt cực tiểu tại \(x = 2\), \({y_{CT}} = - 2\).
Hai cực trị và \({y_{CT}} = - 2\) trái dấu.
Ta có \(f'\left( x \right) = ax\left( {x - 2} \right) = a{x^2} - 2ax \Rightarrow f\left( x \right) = \frac{a}{3}{x^3} - a{x^2} + d\).
Ta có \(\left\{ \begin{array}{l}f\left( 0 \right) = 2\\f\left( 2 \right) = - 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 3\\d = 2\end{array} \right. \Rightarrow f\left( x \right) = {x^3} - 3{x^2} + 2\). Vậy \(f\left( 5 \right) = 52\).
Đồ thị hàm số có có hai điểm cực trị là \(A\left( {0;2} \right),\,\,B\left( {2; - 2} \right)\).
Phương trình đường thẳng đi qua hai điểm cực trị là \(d:\frac{{x - 0}}{{2 - 0}} = \frac{{y - 2}}{{ - 2 - 2}} \Rightarrow d:2x + y - 2 = 0\).
Khoảng cách từ \(O\) đến đường thẳng \(d\) là \(\frac{{\left| { - 2} \right|}}{{\sqrt {{1^2} + {2^2}} }} = \frac{2}{{\sqrt 5 }}\).
Ta có \(f'\left( x \right) = 3{x^2} - 6x\). Xét hàm số \(g\left( x \right) = f\left( x \right) - \left( {3x - 2{x^3}} \right)\).
Có \(g\prime \left( x \right) = f\prime \left( x \right) - \left( {3 - 6{x^2}} \right) = 9{x^2} - 6x - 3\). Cho \(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - \frac{1}{3}\end{array} \right.\).
Bảng xét dấu:
Dựa vào bảng xét dấu, hàm số \(g\left( x \right) = f\left( x \right) - \left( {3x - 2{x^3}} \right)\) đạt cực tiểu tại \(x = 1\).
Đáp án: a) Đúng, b) Đúng, c) Sai, d) Sai.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ giả thiết, ta có bảng biến thiên của hàm số \[f\left( x \right)\]:
Ta có \[g\left( x \right)\, = \,f\left( {3 - x} \right)\]\[ \Rightarrow \]\[g'\left( x \right)\, = \, - f'\left( {3 - x} \right)\].
Từ bảng biến thiên của hàm số \[f\left( x \right)\] ta có:
\[g'\left( x \right)\, \ge 0\]\[ \Leftrightarrow f'\left( {3 - x} \right) \le 0\]\[ \Leftrightarrow \left[ \begin{array}{l}3 - x \le - 1\\1 \le 3 - x \le 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge 4\\ - 1 \le x \le 2\end{array} \right.\].
Như thế ta có bảng biến thiên của hàm số \[g\left( x \right)\]:
Từ bảng biến thiên, ta nhận thấy hàm số \[g\left( x \right)\] có một điểm cực đại.
Đáp án: \(1\).
Lời giải
Ta có thể mô tả bài toán trên bằng hình vẽ sau:
Như đã phân tích ở đề bài, nếu đi trực tiếp từ \(A\) đến \(B\) trên sa mạc với vận tốc và khoảng cách hiện có thì nhà địa chất học không thể đến đúng thời gian quy định. Vì vậy cần thiết phải chia quãng đường đi được thành \(3\) giai đoạn:
Giai đoạn 1: đi từ \(A\) đến \(C\) (từ sa mạc đến đường nhựa song song).
Giai đoạn 2: đi từ \(C\) đến \(D\) (một quãng đường nào đó trên đường nhựa).
Giai đoạn 3: đi từ \(D\) đến \(B\) (từ điểm kết thúc \(D\) trên đường nhựa đi tiếp đến \(B\) băng qua sa mạc).
Gọi \(C,D\) là các điểm như hình vẽ.
Khi đó gọi \(HC = x\,\left( {{\rm{km}}} \right)\,\,\left( {0 < x < 100} \right)\) và \(DK = y\,\,\left( {{\rm{km}}} \right)\,\left( {0 < y < 100} \right)\).
Quãng đường đi từ \(A\) đến \(C\) là \(AC = \sqrt {225 + {x^2}} \left( {{\rm{km}}} \right) \Rightarrow {t_1} = \frac{{AC}}{{{v_{samac}}}} = \frac{{\sqrt {225 + {x^2}} }}{{30}}\) (giờ).
Quãng đường đi từ \(D\) đến \(B\) là \(DB = \sqrt {225 + {y^2}} \,\left( {{\rm{km}}} \right) \Rightarrow {t_2} = \frac{{DB}}{{{v_{samac}}}} = \frac{{\sqrt {225 + {y^2}} }}{{30}}\) (giờ).
Và quãng đường đi \(C\) đến \(D\) là \(CD = 100 - \left( {x + y} \right)\,\,\left( {{\rm{km}}} \right) \Rightarrow {t_3} = \frac{{CD}}{{{v_{duong\,nhua}}}} = \frac{{100 - \left( {x + y} \right)}}{{50}}\) (giờ).
Vậy tổng thời gian mà nhà địa chất học đi từ A đến B là \(t = {t_1} + {t_2} + {t_3}\).
\( \Rightarrow t = T\left( {x;y} \right) = \frac{{\sqrt {225 + {x^2}} }}{{30}} + \frac{{\sqrt {225 + {y^2}} }}{{30}} + \frac{{100 - \left( {x + y} \right)}}{{50}}\).
Đến đây ta cần tìm \(\min T\left( {x;y} \right)\).
Ta có \(T\left( {x;y} \right) = \frac{{\sqrt {225 + {x^2}} }}{{30}} + \frac{{50 - x}}{{50}} + \frac{{\sqrt {225 + {y^2}} }}{{30}} + \frac{{50 - y}}{{50}} = f\left( x \right) + f\left( y \right)\).
Xét hàm số \(f\left( u \right) = \frac{{\sqrt {225 + {u^2}} }}{{30}} + \frac{{50 - u}}{{50}},\,\,0 < u < 100\).
Ta có \[f'\left( u \right) = \frac{u}{{30\sqrt {225 + {u^2}} }} - \frac{1}{{50}},f'\left( u \right) = 0 \Leftrightarrow \sqrt {225 + {u^2}} = \frac{{5u}}{3} > 0 \Leftrightarrow u = \frac{{45}}{4}\].
Lập bảng biến thiên ta có \(\mathop {\min }\limits_{u \in \left( {0;100} \right)} f\left( u \right) = f\left( {\frac{{45}}{4}} \right) = \frac{7}{5}\).
Do đó ta có \(T\left( {x;y} \right) = f\left( x \right) + f\left( y \right) \ge \frac{7}{5} + \frac{7}{5} = \frac{{14}}{5}\)(giờ) \( = 168\) (phút).
Dấu “=” xảy ra khi \(x = y = \frac{{45}}{4}\).
Đáp án: \(168\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải