Câu hỏi:

17/06/2025 7

PHẦN I. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị là đường cong hình bên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Hàm số đã cho nghịch biến trên khoảng nào dưới đây? (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Từ đồ thị, ta thấy hàm số nghịch biến trên khoảng \(\left( {0;2} \right)\). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ giả thiết, ta có bảng biến thiên của hàm số \[f\left( x \right)\]:

Ta có \[g\left( x \right)\, = \,f\left( {3 - x} \right)\]\[ \Rightarrow \]\[g'\left( x \right)\, = \, - f'\left( {3 - x} \right)\].

Từ bảng biến thiên của hàm số \[f\left( x \right)\] ta có:

\[g'\left( x \right)\, \ge 0\]\[ \Leftrightarrow f'\left( {3 - x} \right) \le 0\]\[ \Leftrightarrow \left[ \begin{array}{l}3 - x \le  - 1\\1 \le 3 - x \le 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge 4\\ - 1 \le x \le 2\end{array} \right.\].

Như thế ta có bảng biến thiên của hàm số \[g\left( x \right)\]:

Từ bảng biến thiên, ta nhận thấy hàm số \[g\left( x \right)\] có một điểm cực đại.

Đáp án: \(1\).

Lời giải

Ta có thể mô tả bài toán trên bằng hình vẽ sau:

v (ảnh 2)

Như đã phân tích ở đề bài, nếu đi trực tiếp từ \(A\) đến \(B\) trên sa mạc với vận tốc và khoảng cách hiện có thì nhà địa chất học không thể đến đúng thời gian quy định. Vì vậy cần thiết phải chia quãng đường đi được thành \(3\) giai đoạn:

Giai đoạn 1: đi từ \(A\) đến \(C\) (từ sa mạc đến đường nhựa song song).

Giai đoạn 2: đi từ \(C\) đến \(D\) (một quãng đường nào đó trên đường nhựa).

Giai đoạn 3: đi từ \(D\) đến \(B\) (từ điểm kết thúc \(D\) trên đường nhựa đi tiếp đến \(B\) băng qua sa mạc).

Gọi \(C,D\) là các điểm như hình vẽ.

Khi đó gọi \(HC = x\,\left( {{\rm{km}}} \right)\,\,\left( {0 < x < 100} \right)\) và \(DK = y\,\,\left( {{\rm{km}}} \right)\,\left( {0 < y < 100} \right)\).

Quãng đường đi từ \(A\) đến \(C\) là \(AC = \sqrt {225 + {x^2}} \left( {{\rm{km}}} \right) \Rightarrow {t_1} = \frac{{AC}}{{{v_{samac}}}} = \frac{{\sqrt {225 + {x^2}} }}{{30}}\) (giờ).

Quãng đường đi từ \(D\) đến \(B\) là \(DB = \sqrt {225 + {y^2}} \,\left( {{\rm{km}}} \right) \Rightarrow {t_2} = \frac{{DB}}{{{v_{samac}}}} = \frac{{\sqrt {225 + {y^2}} }}{{30}}\) (giờ).

Và quãng đường đi \(C\) đến \(D\) là \(CD = 100 - \left( {x + y} \right)\,\,\left( {{\rm{km}}} \right) \Rightarrow {t_3} = \frac{{CD}}{{{v_{duong\,nhua}}}} = \frac{{100 - \left( {x + y} \right)}}{{50}}\) (giờ).

Vậy tổng thời gian mà nhà địa chất học đi từ A đến B là \(t = {t_1} + {t_2} + {t_3}\).

\( \Rightarrow t = T\left( {x;y} \right) = \frac{{\sqrt {225 + {x^2}} }}{{30}} + \frac{{\sqrt {225 + {y^2}} }}{{30}} + \frac{{100 - \left( {x + y} \right)}}{{50}}\).

Đến đây ta cần tìm \(\min T\left( {x;y} \right)\).

Ta có \(T\left( {x;y} \right) = \frac{{\sqrt {225 + {x^2}} }}{{30}} + \frac{{50 - x}}{{50}} + \frac{{\sqrt {225 + {y^2}} }}{{30}} + \frac{{50 - y}}{{50}} = f\left( x \right) + f\left( y \right)\).

Xét hàm số \(f\left( u \right) = \frac{{\sqrt {225 + {u^2}} }}{{30}} + \frac{{50 - u}}{{50}},\,\,0 < u < 100\).

Ta có \[f'\left( u \right) = \frac{u}{{30\sqrt {225 + {u^2}} }} - \frac{1}{{50}},f'\left( u \right) = 0 \Leftrightarrow \sqrt {225 + {u^2}}  = \frac{{5u}}{3} > 0 \Leftrightarrow u = \frac{{45}}{4}\].

Lập bảng biến thiên ta có \(\mathop {\min }\limits_{u \in \left( {0;100} \right)} f\left( u \right) = f\left( {\frac{{45}}{4}} \right) = \frac{7}{5}\).

Do đó ta có \(T\left( {x;y} \right) = f\left( x \right) + f\left( y \right) \ge \frac{7}{5} + \frac{7}{5} = \frac{{14}}{5}\)(giờ) \( = 168\) (phút).

Dấu “=” xảy ra khi \(x = y = \frac{{45}}{4}\).

Đáp án: \(168\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Giá trị \(m\) để tiệm cận đứng của đồ thị hàm số \(y = \frac{{2x + 2m - 1}}{{x + m}}\) đi qua điểm \(M\left( {3\,;\,1} \right)\) là     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Hàm số nào dưới đây đồng biến trên khoảng \(\left( {0;2} \right)\)?     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay