Câu hỏi:

17/06/2025 16

PHẦN I. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị là đường cong hình bên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Hàm số đã cho nghịch biến trên khoảng nào dưới đây? (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Từ đồ thị, ta thấy hàm số nghịch biến trên khoảng \(\left( {0;2} \right)\). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tập xác định của hàm số \(y = f\left( x \right)\) là \[D = \mathbb{R}\].

Từ đồ thị, ta thấy hàm số đạt cực đại tại \(x = 0\), ; đạt cực tiểu tại \(x = 2\), \({y_{CT}} =  - 2\).

Hai cực trị  và \({y_{CT}} =  - 2\) trái dấu.

Ta có \(f'\left( x \right) = ax\left( {x - 2} \right) = a{x^2} - 2ax \Rightarrow f\left( x \right) = \frac{a}{3}{x^3} - a{x^2} + d\).

Ta có \(\left\{ \begin{array}{l}f\left( 0 \right) = 2\\f\left( 2 \right) =  - 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 3\\d = 2\end{array} \right. \Rightarrow f\left( x \right) = {x^3} - 3{x^2} + 2\). Vậy \(f\left( 5 \right) = 52\).

Đồ thị hàm số có có hai điểm cực trị là \(A\left( {0;2} \right),\,\,B\left( {2; - 2} \right)\).

Phương trình đường thẳng đi qua hai điểm cực trị là \(d:\frac{{x - 0}}{{2 - 0}} = \frac{{y - 2}}{{ - 2 - 2}} \Rightarrow d:2x + y - 2 = 0\).

Khoảng cách từ \(O\) đến đường thẳng \(d\) là \(\frac{{\left| { - 2} \right|}}{{\sqrt {{1^2} + {2^2}} }} = \frac{2}{{\sqrt 5 }}\).

Ta có \(f'\left( x \right) = 3{x^2} - 6x\). Xét hàm số \(g\left( x \right) = f\left( x \right) - \left( {3x - 2{x^3}} \right)\).

Có \(g\prime \left( x \right) = f\prime \left( x \right) - \left( {3 - 6{x^2}} \right) = 9{x^2} - 6x - 3\). Cho \(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - \frac{1}{3}\end{array} \right.\).

Bảng xét dấu:

Hàm số đã cho có hai cực trị trái dấu. (ảnh 2)

Dựa vào bảng xét dấu, hàm số \(g\left( x \right) = f\left( x \right) - \left( {3x - 2{x^3}} \right)\) đạt cực tiểu tại \(x = 1\).

Đáp án:       a) Đúng,      b) Đúng,     c) Sai,          d) Sai.

Lời giải

Vì \(f'\left( x \right) = 0\) có 3 nghiệm lẻ nên hàm số \(y = f\left( x \right)\) có 3 cực trị. Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP