Câu hỏi:
17/06/2025 21
Một xưởng in có \(15\) máy in được cài đặt tự động và giám sát bởi một kỹ sư, mỗi máy in có thể in được \(30\) ấn phẩm trong \(1\) giờ, chi phí cài đặt và bảo dưỡng cho mỗi máy in cho \(1\) đợt hàng là \(48\,000\) đồng, chi phí trả cho kỹ sư giám sát là \(24\,000\)đồng/giờ. Đợt hàng này xưởng in nhận \(6000\) ấn phẩm thì số máy in cần sử dụng để chi phí in ít nhất là bao nhiêu?
Một xưởng in có \(15\) máy in được cài đặt tự động và giám sát bởi một kỹ sư, mỗi máy in có thể in được \(30\) ấn phẩm trong \(1\) giờ, chi phí cài đặt và bảo dưỡng cho mỗi máy in cho \(1\) đợt hàng là \(48\,000\) đồng, chi phí trả cho kỹ sư giám sát là \(24\,000\)đồng/giờ. Đợt hàng này xưởng in nhận \(6000\) ấn phẩm thì số máy in cần sử dụng để chi phí in ít nhất là bao nhiêu?
Quảng cáo
Trả lời:
Gọi \(x\) \(\left( {0 < x < 15} \right)\) là số máy in cần sử dụng để in lô hàng.
Chi phí cài đặt và bảo dưỡng là \(48000x\) (đồng).
Số giờ in hết số ấn phẩm là \(\frac{{6000}}{{30x}}\), chi phí giám sát là \(\frac{{6\,000}}{{30x}} \cdot 24\,000 = \frac{{4\,800\,000}}{x}\).
Tổng chi phí in là \(P\left( x \right) = 48\,000x + \frac{{4\,800\,000}}{x}\) (đồng).
\(P'\left( x \right) = 48\,000 - \frac{{4\,800\,000}}{{{x^2}}}\); \(P'\left( x \right) = 0 \Leftrightarrow {x^2} = 100 \Leftrightarrow \left[ \begin{array}{l}x = 10\\x = - 10\,\,\left( L \right)\end{array} \right.\).
Bảng biến thiên:
Vậy chi phí in nhỏ nhất thì cần sử dụng \(10\) máy.
Đáp án: \(10\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tập xác định của hàm số \(y = f\left( x \right)\) là \[D = \mathbb{R}\].
Từ đồ thị, ta thấy hàm số đạt cực đại tại \(x = 0\), ; đạt cực tiểu tại \(x = 2\), \({y_{CT}} = - 2\).
Hai cực trị và \({y_{CT}} = - 2\) trái dấu.
Ta có \(f'\left( x \right) = ax\left( {x - 2} \right) = a{x^2} - 2ax \Rightarrow f\left( x \right) = \frac{a}{3}{x^3} - a{x^2} + d\).
Ta có \(\left\{ \begin{array}{l}f\left( 0 \right) = 2\\f\left( 2 \right) = - 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 3\\d = 2\end{array} \right. \Rightarrow f\left( x \right) = {x^3} - 3{x^2} + 2\). Vậy \(f\left( 5 \right) = 52\).
Đồ thị hàm số có có hai điểm cực trị là \(A\left( {0;2} \right),\,\,B\left( {2; - 2} \right)\).
Phương trình đường thẳng đi qua hai điểm cực trị là \(d:\frac{{x - 0}}{{2 - 0}} = \frac{{y - 2}}{{ - 2 - 2}} \Rightarrow d:2x + y - 2 = 0\).
Khoảng cách từ \(O\) đến đường thẳng \(d\) là \(\frac{{\left| { - 2} \right|}}{{\sqrt {{1^2} + {2^2}} }} = \frac{2}{{\sqrt 5 }}\).
Ta có \(f'\left( x \right) = 3{x^2} - 6x\). Xét hàm số \(g\left( x \right) = f\left( x \right) - \left( {3x - 2{x^3}} \right)\).
Có \(g\prime \left( x \right) = f\prime \left( x \right) - \left( {3 - 6{x^2}} \right) = 9{x^2} - 6x - 3\). Cho \(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - \frac{1}{3}\end{array} \right.\).
Bảng xét dấu:
Dựa vào bảng xét dấu, hàm số \(g\left( x \right) = f\left( x \right) - \left( {3x - 2{x^3}} \right)\) đạt cực tiểu tại \(x = 1\).
Đáp án: a) Đúng, b) Đúng, c) Sai, d) Sai.
Lời giải
Vì \(f'\left( x \right) = 0\) có 3 nghiệm lẻ nên hàm số \(y = f\left( x \right)\) có 3 cực trị. Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.