Câu hỏi:
17/06/2025 8Một xưởng in có \(15\) máy in được cài đặt tự động và giám sát bởi một kỹ sư, mỗi máy in có thể in được \(30\) ấn phẩm trong \(1\) giờ, chi phí cài đặt và bảo dưỡng cho mỗi máy in cho \(1\) đợt hàng là \(48\,000\) đồng, chi phí trả cho kỹ sư giám sát là \(24\,000\)đồng/giờ. Đợt hàng này xưởng in nhận \(6000\) ấn phẩm thì số máy in cần sử dụng để chi phí in ít nhất là bao nhiêu?
Quảng cáo
Trả lời:
Gọi \(x\) \(\left( {0 < x < 15} \right)\) là số máy in cần sử dụng để in lô hàng.
Chi phí cài đặt và bảo dưỡng là \(48000x\) (đồng).
Số giờ in hết số ấn phẩm là \(\frac{{6000}}{{30x}}\), chi phí giám sát là \(\frac{{6\,000}}{{30x}} \cdot 24\,000 = \frac{{4\,800\,000}}{x}\).
Tổng chi phí in là \(P\left( x \right) = 48\,000x + \frac{{4\,800\,000}}{x}\) (đồng).
\(P'\left( x \right) = 48\,000 - \frac{{4\,800\,000}}{{{x^2}}}\); \(P'\left( x \right) = 0 \Leftrightarrow {x^2} = 100 \Leftrightarrow \left[ \begin{array}{l}x = 10\\x = - 10\,\,\left( L \right)\end{array} \right.\).
Bảng biến thiên:
Vậy chi phí in nhỏ nhất thì cần sử dụng \(10\) máy.
Đáp án: \(10\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ giả thiết, ta có bảng biến thiên của hàm số \[f\left( x \right)\]:
Ta có \[g\left( x \right)\, = \,f\left( {3 - x} \right)\]\[ \Rightarrow \]\[g'\left( x \right)\, = \, - f'\left( {3 - x} \right)\].
Từ bảng biến thiên của hàm số \[f\left( x \right)\] ta có:
\[g'\left( x \right)\, \ge 0\]\[ \Leftrightarrow f'\left( {3 - x} \right) \le 0\]\[ \Leftrightarrow \left[ \begin{array}{l}3 - x \le - 1\\1 \le 3 - x \le 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge 4\\ - 1 \le x \le 2\end{array} \right.\].
Như thế ta có bảng biến thiên của hàm số \[g\left( x \right)\]:
Từ bảng biến thiên, ta nhận thấy hàm số \[g\left( x \right)\] có một điểm cực đại.
Đáp án: \(1\).
Lời giải
Ta có \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{2000x - 1500}}{{35x + 5}} = \frac{{2000}}{{35}} = \frac{{400}}{7}\).
Do đó đồ thị hàm số \(y = f\left( x \right)\) nhận đường thẳng \(y = \frac{{400}}{7}\) làm tiệm cận ngang, tức là khi số năm \(x\) càng lớn thì chi phí vận hành máy móc trong một năm càng tiến gần đến \(\frac{{400}}{7} \approx 57,1\) (triệu đồng).
Đáp án: \(57,1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải