Câu hỏi:

18/06/2025 81

Câu lạc bộ cờ của nhà trường gồm 35 thành viên, mỗi thành viên biết chơi ít nhất một trong hai môn cờ vua hoặc cờ tướng. Biết rằng có 25 thành viên biết chơi cờ vua và 20 thành viên biết chơi cờ tướng. Chọn ngẫu nhiên 1 thành viên của câu lạc bộ. Tính xác suất thành viên được chọn biết chơi cờ vua, biết rằng thành viên đó biết chơi cờ tướng.     

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \(V\) là biến cố “thành viên được chọn biết chơi cờ vua”;

\(T\) là biến cố “thành viên được chọn biết chơi cờ tướng”.

Theo đề ta có số thành viên biết chơi cả cờ vua và cờ tướng là: \(25 + 20 - 35 = 10\).

Xác suất để thành viên đó biết chơi cờ tướng là \(P\left( T \right) = \frac{{20}}{{35}} = \frac{4}{7}\).

Xác suất để thành viên đó biết chơi cả cờ vua và cờ tướng là \(P\left( {V \cap T} \right) = \frac{{10}}{{35}} = \frac{2}{7}\).

Do đó \(P\left( {V|T} \right) = \frac{{P\left( {V \cap T} \right)}}{{P\left( T \right)}} = \frac{2}{7}:\frac{4}{7} = \frac{1}{2}\). Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(A\) là biến cố “một khách hàng mua điện thoại kèm ốp”;

\(B\) là biến cố “một khách hàng mua điện thoại Samsung”.

Theo đề ta có: \(P\left( B \right) = 75\%  = 0,75;P\left( {\overline B } \right) = 1 - 0,75 = 0,25\);

\(P\left( {A|B} \right) = 60\%  = 0,6;P\left( {A|\overline B } \right) = 30\%  = 0,3\).

Ta có \(P\left( A \right) = P\left( B \right) \cdot P\left( {A|B} \right) + P\left( {\overline B } \right) \cdot P\left( {A|\overline B } \right) = 0,75 \cdot 0,6 + 0,25 \cdot 0,3 = 0,525\).

Đáp án:       a) Đúng,      b) Sai,         c) Đúng,      d) Đúng.

Lời giải

Gọi \(A\) là biến cố: “Người đó nghiện thuốc lá”;  \(B\) là biến cố: “Người đó bị viêm họng”.

Theo đề ta có \(P\left( A \right) = 0,3 \Rightarrow P\left( {\overline A } \right) = 0,7\); \(P\left( {B|A} \right) = a\% ;P\left( {B|\overline A } \right) = 0,4\);

\(P\left( {AB} \right) = 0,21;P\left( {\overline A B} \right) = b\% \).

Có \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,21}}{{0,3}} = 70\%  \Rightarrow a = 70\).

Có \[P\left( {B|\overline A } \right) = \frac{{P\left( {B \cap \overline A } \right)}}{{P\left( {\overline A } \right)}} \Rightarrow P\left( {B \cap \overline A } \right) = P\left( {\overline A } \right) \cdot P\left( {B|\overline A } \right) = 0,7 \cdot 0,4 = 28\% \] \( \Rightarrow b = 28\).

Do đó \(a + b = 98\).

Đáp án: \(98\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP