Câu hỏi:

18/06/2025 17

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} + 1}}{{1 - x}}\;\;\;\;khi\;x < 1\\\sqrt {2x - 2} \;khi\;x \ge 1\end{array} \right.\). Khi đó \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\)     

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

A

\(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\)\( = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 1}}{{1 - x}} =  + \infty \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(f\left( 8 \right) = \frac{{\sqrt {8 + 1}  - 2}}{{8 - 3}} = \frac{1}{5}\).

b) \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {x + 1}  - 2}}{{x - 3}} = \frac{1}{3}\).

c) \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = \mathop {\lim }\limits_{x \to 3} \frac{{x - 3}}{{\left( {\sqrt {x + 1}  + 2} \right)\left( {x - 3} \right)}} = \mathop {\lim }\limits_{x \to 3} \frac{1}{{\sqrt {x + 1}  + 2}} = \frac{1}{4}\).

d) \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\sqrt {\frac{1}{x} + \frac{1}{{{x^2}}}}  - 2}}{{x - 3}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {\frac{1}{x} + \frac{1}{{{x^2}}}}  - \frac{2}{x}}}{{1 - \frac{3}{x}}} = 0\).

\(\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} + x + 2}  - x} \right)\)\( = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x + 2}}{{\sqrt {{x^2} + x + 2}  + x}}\)\( = \mathop {\lim }\limits_{x \to  + \infty } \frac{{1 + \frac{2}{x}}}{{\sqrt {1 + \frac{1}{x} + \frac{2}{{{x^2}}}}  + 1}} = \frac{1}{2}\).

Do đó 3a + 4b = 2.

Đáp án: a) Sai;  b) Đúng;   c) Sai;   d) Đúng.

Lời giải

a) \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \sqrt {{x^2} + 1}  = \sqrt 5 \).

b) \(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {{x^2} - 3x + 1} \right) = 1\).

c) \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \sqrt {{x^2} + 1}  = 1\).

d) Do \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right)\) nên \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = 1\).

Đáp án: a) Sai;  b) Sai;   c) Đúng;   d) Đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Giới hạn\(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{ - 2x + 1}}{{x - 1}}\) bằng     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

\(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{x + 2}}{{x - 1}}\) bằng:     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay