Câu hỏi:

18/06/2025 41 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật tâm O. Gọi \(G\) là trọng tâm tam giác \(SAD\)\(E\) là điểm trên cạnh \(DC\) sao cho \(DC = 3DE,I\) là trung điểm \(AD\). Khi đó:

a) \(OI\) song song với mặt phẳng \((SAB)\).

b) \(OI\) song song với mặt phẳng \((SCD)\).

c) \(IE\) song song với \(AC\).

d) \(GE//(SBC)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

C (ảnh 1)

a) Ta có \(\left\{ {\begin{array}{*{20}{l}}{AB \subset \left( {SAB} \right)}\\{OI//AB}\end{array} \Rightarrow OI//\left( {SAB} \right)} \right.\)

b) Tương tự, \(\left\{ {\begin{array}{*{20}{l}}{CD \subset \left( {SCD} \right)}\\{OI//CD}\end{array} \Rightarrow OI//\left( {SCD} \right)} \right.\).

c) Vì \(\frac{{DI}}{{DA}} = \frac{1}{2} \ne \frac{1}{3} = \frac{{DE}}{{DC}}\) nên \(IE\) không song song với \(AC\).

d) Gọi \(K\) là trung điểm của \(BC,G'\) là trọng tâm tam giác \(SBC\).

Khi đó \(\frac{{SG'}}{{SK}} = \frac{{SG}}{{SI}} = \frac{{G'G}}{{KI}} = \frac{2}{3}\), suy ra \(G'G//IK//CE\) và \(G'G = \frac{2}{3}KI = \frac{2}{3}CD = CE\).

Do đó tứ giác \(G'GEC\) là hình bình hành, suy ra \[CG'//GE \Rightarrow GE//(SBC)\].

Đáp án: a) Đúng;   b) Đúng; c) Sai; d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

A

ABCD là hình bình nên AD // BC mà BC Ì (SBC) nên AD // (SBC).

Câu 2

Lời giải

B

Nếu b // a và a Ì (α) thì b // (α).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP