Câu hỏi:

28/06/2025 40 Lưu

A. TRẮC NGHIỆM (7,0 điểm)

Phần 1. (3,0 điểm) Câu trắc nghiệm nhiều phương án lựa chọn

Trong mỗi câu hỏi từ câu 1 đến câu 12, hãy viết chữ cái in hoa đứng trước phương án đúng duy nhất vào bài làm.

Cách viết nào sau đây biểu diễn một số hữu tỉ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Số hữu tỉ là số được viết dưới dạng phân số \(\frac{a}{b}\) với \(a,b \in \mathbb{Z},b \ne 0\).

Do đó, \(\frac{3}{7}\) biểu diễn một số hữu tỉ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Sb) Đc) Sd) Đ

a) Nhận thấy \(\widehat {xAB}\) và \(\widehat {CAB}\) chỉ là hai góc kề nhau do \(\widehat {xAB} + \widehat {CAB} \ne 180^\circ \). Do đó, ý a) sai.

b) Vì tia \(AC\) là tia phân giác của \(\widehat {yAB}\) nên ta có \(\widehat {yAB} = 2\widehat {BAC}\). Do đó, ý b) là đúng.

c) Có \(\widehat {xAB}\) và \(\widehat {yAB}\) là hai góc kề là hai góc kề bù nên ta có \(\widehat {xAB} + \widehat {yAB} = 180^\circ \).

Do đó, \(\widehat {yAB} = 180^\circ - \widehat {xAB} = 180^\circ - 70^\circ = 110^\circ \).

Mà tia \(AC\) là tia phân giác của \(\widehat {yAB}\) nên \(\widehat {yAC} = \widehat {CAB} = \frac{{\widehat {yAB}}}{2} = \frac{{110^\circ }}{2} = 55^\circ \).

Vậy ý c) sai.

d) Ta có: \(\widehat {yAC} = 55^\circ \); \(\widehat {ACB} = 55^\circ \) nên \(\widehat {ACB} = \widehat {yAC}\).

Mà hai góc ở vị trí so le trong nên \(xy\parallel BC\).

Do đó, ý d) đúng.

Lời giải

Hướng dẫn giải

a) Ta có \(\widehat {BAC}\) và \(\widehat {CAx}\) là hai góc kề bù nên \(\widehat {BAC} + \widehat {CAx} = 180^\circ \)

Suy ra \(\widehat {xAC} = 180^\circ - \widehat {BAC} = 180^\circ - 100^\circ = 80^\circ \).

Lại có \(Ay\) là tia phân giác của \(\widehat {xAC}\) nên \(\widehat {CAy} = \widehat {yAx} = \frac{{\widehat {CAx}}}{2} = \frac{{80^\circ }}{2} = 40^\circ \).

Suy ra \(\widehat {xAy} = \widehat {ABC} = 40^\circ \).

Mà hai góc ở vị trí đồng vị nên \(Ay\parallel BC\).

b)

(1,0 điểm) Cho hình vẽ bên, biết   A y   là phân giác của   ˆ x A C .    a) Chứng minh   A y ∥ B C  .  b) Kẻ tia   A z   nằm trong   ˆ B A C   sao cho   ˆ z A y = 90 ∘  . Chứng minh tia   A z   là phân giác của   ˆ B A C . (ảnh 2)

Do \(\widehat {yAC}\) và \(\widehat {zAC}\) là hai góc kề nhau nên \(\widehat {zAC} + \widehat {yAC} = \widehat {zAy}\) hay \(\widehat {zAC} + 40^\circ = 90^\circ \).

Suy ra \(\widehat {zAC} = 90^\circ - 40^\circ = 50^\circ \).

Theo đề, tia \(Az\) nằm trong \(\widehat {BAC}\) nên \(\widehat {zAC}\) và \(\widehat {zAB}\) là hai góc kề nhau (1).

Do đó, \(\widehat {zAC} + \widehat {zAB} = \widehat {BAC}\) hay \(50^\circ + \widehat {zAB} = 100^\circ \) suy ra \(\widehat {zAB} = 100^\circ - 50 = 50^\circ \).

Suy ra \(\widehat {zAC} = \widehat {zAB} = 50^\circ \) (2).

Từ (1) và (2) suy ra tia \(Az\) là tia phân giác của \(\widehat {BAC}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP