Câu hỏi:
28/06/2025 9Tìm giá trị của \(x\), biết: \(\sqrt {0,81} .\left( {x + \sqrt {\frac{{16}}{{25}}} } \right) = \frac{9}{{10}}\)(Kết quả ghi dưới dạng số thập phân).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án: \(0,2\)
Ta có: \(\sqrt {0,81} .\left( {x + \sqrt {\frac{{16}}{{25}}} } \right) = \frac{9}{{10}}\)
\(0,9.\left( {x + \frac{4}{5}} \right) = \frac{9}{{10}}\)
\(\frac{9}{{10}}.\left( {x + \frac{4}{5}} \right) = \frac{9}{{10}}\)
\(x + \frac{4}{5} = \frac{9}{{10}}:\frac{9}{{10}}\)
\(x + \frac{4}{5} = 1\)
\(x = 1 - \frac{4}{5}\)
\(x = \frac{1}{5}\)
\(x = 0,2\).
Vậy \(x = 0,2\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Ta có \(\widehat {BAC}\) và \(\widehat {CAx}\) là hai góc kề bù nên \(\widehat {BAC} + \widehat {CAx} = 180^\circ \)
Suy ra \(\widehat {xAC} = 180^\circ - \widehat {BAC} = 180^\circ - 100^\circ = 80^\circ \).
Lại có \(Ay\) là tia phân giác của \(\widehat {xAC}\) nên \(\widehat {CAy} = \widehat {yAx} = \frac{{\widehat {CAx}}}{2} = \frac{{80^\circ }}{2} = 40^\circ \).
Suy ra \(\widehat {xAy} = \widehat {ABC} = 40^\circ \).
Mà hai góc ở vị trí đồng vị nên \(Ay\parallel BC\).
b)
Do \(\widehat {yAC}\) và \(\widehat {zAC}\) là hai góc kề nhau nên \(\widehat {zAC} + \widehat {yAC} = \widehat {zAy}\) hay \(\widehat {zAC} + 40^\circ = 90^\circ \).
Suy ra \(\widehat {zAC} = 90^\circ - 40^\circ = 50^\circ \).
Theo đề, tia \(Az\) nằm trong \(\widehat {BAC}\) nên \(\widehat {zAC}\) và \(\widehat {zAB}\) là hai góc kề nhau (1).
Do đó, \(\widehat {zAC} + \widehat {zAB} = \widehat {BAC}\) hay \(50^\circ + \widehat {zAB} = 100^\circ \) suy ra \(\widehat {zAB} = 100^\circ - 50 = 50^\circ \).
Suy ra \(\widehat {zAC} = \widehat {zAB} = 50^\circ \) (2).
Từ (1) và (2) suy ra tia \(Az\) là tia phân giác của \(\widehat {BAC}\).
Lời giải
Hướng dẫn giải
Đáp án: \(3\)
Xét các phân số, ta có:
\(\frac{5}{8} = \frac{5}{{{2^3}}}\) nên \(\frac{5}{8}\) viết được dưới dạng số thập phân hữu hạn.
\( - \frac{3}{{20}} = \frac{{ - 3}}{{{2^2} \cdot 5}}\) nên \( - \frac{3}{{20}}\) viết được dưới dạng số thập phân hữu hạn.
\(\frac{4}{{11}}\) viết được dưới dạng số thập phân vô hạn tuần hoàn do mẫu số là 11.
\(\frac{{15}}{{22}} = \frac{{15}}{{2 \cdot 11}}\) viết được dưới dạng số thập phân vô hạn tuần hoàn do mẫu số có ước là 11 (khác 2 và 5).
\( - \frac{7}{{12}} = \frac{{ - 7}}{{3 \cdot {2^2}}}\) viết được dưới dạng số thập phân vô hạn tuần hoàn do mẫu số có ước khác 2 và 5.
\(\frac{{14}}{{35}} = \frac{2}{5}\) viết được dưới dạng số thập phân hữu hạn.
Do đó, có 3 phân số viết được dưới dạng số thập phân vô hạn tuần hoàn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.