Câu hỏi:

30/06/2025 52 Lưu

Cho \(\Delta ABC\), kẻ \(AH \bot BC\) tại \(H.\) Kẻ \(BK \bot AC\) tại \(K\), \(CL \bot AB\) tại \(L.\)

a) \(AH < AB\).

b) \(2AH < AB + AC.\)

c) \(CL > \frac{1}{2}\left( {AC + CB} \right)\).

d) \(AH + BK + CL < AB + BC + CA.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: a) Đ b) Đc) Sd) Đ

Cho   Δ A B C  , kẻ   A H ⊥ B C   tại   H .   Kẻ   B K ⊥ A C   tại   K  ,   C L ⊥ A B   tại   L .    a)   A H < A B  .  b)   2 A H < A B + A C .    c)   C L > 1 2 ( A C + C B )  .  d)   A H + B K + C L < A B + B C + C A . (ảnh 1)

Ta có:

\(AH\) là đường vuông góc; \(AB,AC\) là các đường xiên.

Suy ra \(AH < AB;AH < AC\).

Do đó, \(AH + AH < AB + AC\) hay \(2AH < AB + AC.\)

Ta có: \(BK \bot AC\) tại \(K\) suy ra \(BK\) là đường vuông góc; \(AB,BC\) là các đường xiên.

\(CL \bot AB\) tại \(L\) suy ra \(CL\) là đường vuông góc; \(AC,BC\) là các đường xiên.

Suy ra \(BK < AB;BK < BC\) do đó, \(2BK < AB + BC\) nên \(BK < \frac{1}{2}\left( {AB + BC} \right)\).

\(CL < AC;CL < BA\) do đó, \(2CL < AB + AC\) nên \(CL < \frac{1}{2}\left( {AB + AC} \right)\).

Mà \(2AH < AB + AC\) nên \(AH < \frac{1}{2}\left( {AB + AC} \right)\).

Do đó, \(AH + BK + CL < \frac{1}{2}\left( {AB + AC + AC + BC + BC + AB} \right)\)

Hay \(AH + BK + CL < \frac{1}{2}\left( {2AB + 2AC + 2BC} \right)\)

Do đó, \(AH + BK + CL < AB + BC + CA.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(BC < AB < AC.\)

B. \(AC < AB < BC.\)

C. \(AC < BC < AB.\)

D. \(AB < BC < AC.\)

Lời giải

Đáp án đúng là: A

Cho tam giác   A B C   có   ˆ B = 70 ∘ ; ˆ A = 50 ∘  . Em hãy chọn câu trả lời đúng nhất. (ảnh 1)

Áp dụng định lí tổng ba góc của một tam giác cho \(\Delta ABC\), ta được:

\(\widehat A + \widehat B + \widehat C = 180^\circ \), suy ra \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) = 180^\circ - \left( {50^\circ + 70^\circ } \right) = 60^\circ \).

Suy ra \(\widehat A < \widehat C < \widehat B\).

Vậy nên \(BC < AB < AC.\)

Lời giải

Đáp án đúng là: A

Cho   Δ A B C   có   A M , B N   là hai đường trung tuyến,   G   là trọng tâm. Nhận định nào sau đây là đúng? (ảnh 1)

Vì trọng tâm của tam giác chia đường trung tuyến thành ba đoạn có độ dài bằng nhau nên \(AG = 2GM.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP