Câu hỏi:
30/06/2025 12Cho \(\Delta ABC\), kẻ \(AH \bot BC\) tại \(H.\) Kẻ \(BK \bot AC\) tại \(K\), \(CL \bot AB\) tại \(L.\)
a) \(AH < AB\).
b) \(2AH < AB + AC.\)
c) \(CL > \frac{1}{2}\left( {AC + CB} \right)\).
d) \(AH + BK + CL < AB + BC + CA.\)
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: a) Đ b) Đc) Sd) Đ
Ta có:
\(AH\) là đường vuông góc; \(AB,AC\) là các đường xiên.
Suy ra \(AH < AB;AH < AC\).
Do đó, \(AH + AH < AB + AC\) hay \(2AH < AB + AC.\)
Ta có: \(BK \bot AC\) tại \(K\) suy ra \(BK\) là đường vuông góc; \(AB,BC\) là các đường xiên.
\(CL \bot AB\) tại \(L\) suy ra \(CL\) là đường vuông góc; \(AC,BC\) là các đường xiên.
Suy ra \(BK < AB;BK < BC\) do đó, \(2BK < AB + BC\) nên \(BK < \frac{1}{2}\left( {AB + BC} \right)\).
\(CL < AC;CL < BA\) do đó, \(2CL < AB + AC\) nên \(CL < \frac{1}{2}\left( {AB + AC} \right)\).
Mà \(2AH < AB + AC\) nên \(AH < \frac{1}{2}\left( {AB + AC} \right)\).
Do đó, \(AH + BK + CL < \frac{1}{2}\left( {AB + AC + AC + BC + BC + AB} \right)\)
Hay \(AH + BK + CL < \frac{1}{2}\left( {2AB + 2AC + 2BC} \right)\)
Do đó, \(AH + BK + CL < AB + BC + CA.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Vì trọng tâm của tam giác chia đường trung tuyến thành ba đoạn có độ dài bằng nhau nên \(AG = 2GM.\)
Lời giải
Đáp án đúng là: B
Ta có đại lượng \(y\) tỉ lệ thuận với đại lượng \(x\) theo hệ số \( - 2\) thì \(y = - 2x.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.