Câu hỏi:

30/06/2025 119 Lưu

(1,0 điểm) Cho \(\Delta ABC\) có \(D\) là trung điểm của \(AC.\) Trên đoạn \(BD\) lấy điểm \(E\) sao cho \(BE = 2ED.\) Điểm \(F\) thuộc tia đối của tia \(DE\) sao cho \(BF = 2BE\). Gọi \(K\) là trung điểm của \(CF\) và \(G\) là giao điểm của \(EK\) và \(AC.\)

a) Chứng minh rằng \(G\) là trọng tâm tam giác \(EFC\).

b) Tính các tỉ số \(\frac{{GE}}{{GK}};\frac{{GC}}{{DC}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

(1,0 điểm) Cho   Δ A B C   có   D   là trung điểm của   A C .   Trên đoạn   B D   lấy điểm   E   sao cho   B E = 2 E D .   Điểm   F   thuộc tia đối của tia   D E   sao cho   B F = 2 B E  . Gọi   K   là trung điểm của   C F   và   G   là giao điểm của   E K   và   A C . (ảnh 1)

a) Ta có: \(BF = 2BE\) suy ra \(BE = EF.\)

Mà \(BE = 2ED\) nên \(EF = 2ED.\)

Do đó, \(D\) là trung điểm của \(EF.\)

Suy ra \(CD\) là đường trung tuyến của tam giác \(EFC\).

Vì \(K\) là trung điểm của \(CF\) nên \(EK\) là đường trung tuyến của \(\Delta EFC\).

Vì \(\Delta EFC\) có hai đường trung tuyến \(CD\) và \(EK\) cắt nhau tại \(G\) nên \(G\) là trọng tâm của \(\Delta EFC\).

b) Vì \(G\) là trọng tâm của \(\Delta EFC\) nên \(\frac{{GC}}{{DC}} = \frac{2}{3}\) và \(GE = \frac{2}{3}EK\).

Suy ra \(GK = \frac{1}{3}EK\) nên \(GE = 2GK\). Do đó, \(\frac{{GE}}{{GK}} = 2.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(BC < AB < AC.\)

B. \(AC < AB < BC.\)

C. \(AC < BC < AB.\)

D. \(AB < BC < AC.\)

Lời giải

Đáp án đúng là: A

Cho tam giác   A B C   có   ˆ B = 70 ∘ ; ˆ A = 50 ∘  . Em hãy chọn câu trả lời đúng nhất. (ảnh 1)

Áp dụng định lí tổng ba góc của một tam giác cho \(\Delta ABC\), ta được:

\(\widehat A + \widehat B + \widehat C = 180^\circ \), suy ra \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) = 180^\circ - \left( {50^\circ + 70^\circ } \right) = 60^\circ \).

Suy ra \(\widehat A < \widehat C < \widehat B\).

Vậy nên \(BC < AB < AC.\)

Lời giải

Hướng dẫn giải

Đáp án: \(14\)

Ta có \(E\) là hình chiếu của \(B\) lên cạnh \(CD\), suy ra \(BE \bot CD\) tại \(E\) hay \(CE \bot BE\) tại \(E\).

Do đó, độ dài \(CE\) là khoảng cách từ \(C\) đến đường thẳng \(BE\) (1).

Hình vuông \(ABED\) có diện tích là \(7.7 = 49{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).

Diện tích hình thang \(ABCD\) là \(49.2 = 98{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).

Ta có công thức tính diện tích hình thang \(ABCD\) là \(S = \frac{{\left( {AB + CD} \right).BE}}{2}\).

Mà \(AB = BE = 7{\rm{ cm; }}S = 98{\rm{ c}}{{\rm{m}}^2}\).

Suy ra, độ dài đáy lớn của hình thang \(ABCD\) là \(CD = \frac{{98.2}}{7} = 21{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).

Do \(E \in CD\) nên \(CD = CE + DE\).

Suy ra \(CE = CD - DE = 21 - 7 = 14{\rm{ }}\left( {{\rm{cm}}} \right)\) (2).

Từ (1) và (2) suy ra khoảng cách từ \(C\) đến đường thẳng \(BE\) là \(14{\rm{ }}\left( {{\rm{cm}}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \( - {y^2} + 3y + 5.\)

B. \(2{y^3} - 3{x^2} + 5.\)

C. \( - y + 3x - 1.\)

D. \(x - 2xy + 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP