Câu hỏi:

30/06/2025 30 Lưu

(1,0 điểm) Cho \(\Delta ABC\) có \(D\) là trung điểm của \(AC.\) Trên đoạn \(BD\) lấy điểm \(E\) sao cho \(BE = 2ED.\) Điểm \(F\) thuộc tia đối của tia \(DE\) sao cho \(BF = 2BE\). Gọi \(K\) là trung điểm của \(CF\) và \(G\) là giao điểm của \(EK\) và \(AC.\)

a) Chứng minh rằng \(G\) là trọng tâm tam giác \(EFC\).

b) Tính các tỉ số \(\frac{{GE}}{{GK}};\frac{{GC}}{{DC}}.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

(1,0 điểm) Cho   Δ A B C   có   D   là trung điểm của   A C .   Trên đoạn   B D   lấy điểm   E   sao cho   B E = 2 E D .   Điểm   F   thuộc tia đối của tia   D E   sao cho   B F = 2 B E  . Gọi   K   là trung điểm của   C F   và   G   là giao điểm của   E K   và   A C . (ảnh 1)

a) Ta có: \(BF = 2BE\) suy ra \(BE = EF.\)

Mà \(BE = 2ED\) nên \(EF = 2ED.\)

Do đó, \(D\) là trung điểm của \(EF.\)

Suy ra \(CD\) là đường trung tuyến của tam giác \(EFC\).

Vì \(K\) là trung điểm của \(CF\) nên \(EK\) là đường trung tuyến của \(\Delta EFC\).

Vì \(\Delta EFC\) có hai đường trung tuyến \(CD\) và \(EK\) cắt nhau tại \(G\) nên \(G\) là trọng tâm của \(\Delta EFC\).

b) Vì \(G\) là trọng tâm của \(\Delta EFC\) nên \(\frac{{GC}}{{DC}} = \frac{2}{3}\) và \(GE = \frac{2}{3}EK\).

Suy ra \(GK = \frac{1}{3}EK\) nên \(GE = 2GK\). Do đó, \(\frac{{GE}}{{GK}} = 2.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Cho   Δ A B C   có   A M , B N   là hai đường trung tuyến,   G   là trọng tâm. Nhận định nào sau đây là đúng? (ảnh 1)

Vì trọng tâm của tam giác chia đường trung tuyến thành ba đoạn có độ dài bằng nhau nên \(AG = 2GM.\)

Lời giải

Hướng dẫn giải

Đáp án: \(90\)

Ta có: \(\frac{x}{2} = \frac{y}{5}\) suy ra \(\frac{{2x}}{4} = \frac{{ - y}}{{ - 5}} = \frac{{2x - y}}{{4 - 5}} = \frac{3}{{ - 1}} = - 3\).

Do đó, \(x = \left( { - 3} \right).2 = - 6\) và \(y = 5.\left( { - 3} \right) = - 15\).

Vậy \(A = x.y = - 6.\left( { - 15} \right) = 90.\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP