Câu hỏi:

30/06/2025 36 Lưu

(1,0 điểm) Cho tam giác \(ABC\), trung tuyến \(BD\). Trên tia đối của tia \(DB\) lấy điểm \(E\) sao cho \(DE = BD\). Gọi \(P,Q\) lần lượt là điểm trên \(BE\) sao cho \(BP = PQ = QE\). Chứng minh:

a) \(CP,CQ\) cắt \(AB,AE\) tại trung điểm của \(AB,AE\).

b) \(CP\parallel AQ\) và \(CQ\parallel AP.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

(1,0 điểm) Cho tam giác   A B C  , trung tuyến   B D  . Trên tia đối của tia   D B   lấy điểm   E   sao cho   D E = B D  . Gọi   P , Q   lần lượt là điểm trên   B E   sao cho   B P = P Q = Q E  . Chứng minh:  a)   C P , C Q   cắt   A B , A E   tại trung điểm của   A B , A E  .  b)   C P ∥ A Q   và   C Q ∥ A P . (ảnh 1)

a) Gọi \(M,N\) lần lượt là trung điểm của \(AB,AE\).

Ta có: \(BP = PQ = QE\) và \(BD = DE\).

Mà \(BD = BP + PD;DE = QE + DQ\).

Suy ra \(PD = DQ\).

Hay \(D\) là trung điểm của \(PQ\).

Ta có: \(PD = \frac{1}{2}PQ\) hay \(PD = \frac{1}{2}BP\). Suy ra \(PD = \frac{1}{3}BD\)

Lại có \(BD\) là trung tuyến của \(\Delta ABC\).

Suy ra \(P\)là trọng tâm của \(\Delta ABC\).

Do đó, \(CP\) cắt \(AB\) tại trung điểm \(M.\)

Tương tự ta có: \(QD = \frac{1}{2}PQ = \frac{1}{2}QE\) hay \(QD = \frac{1}{3}ED\).

Do đó, \(Q\) là trọng tâm của tam giác \(AEC\).

Suy ra \(CQ\) cắt \(AE\) tại trung điểm \(N\).

b) Xét \(\Delta ADP\) và \(\Delta CDQ\) có:

\(AD = DC\) (gt)

\(\widehat {ADP} = \widehat {CDQ}\) (đối đỉnh)

\(PD = DQ\) (cmt)

Suy ra \(\Delta ADP = \Delta CDQ\) (c.g.c)

Suy ra \(\widehat {DAP} = \widehat {DCQ}\) (hai góc tương ứng).

Mà hai góc ở vị trí so le trong nên \(CQ\parallel AP.\)

Xét \(\Delta ADQ\) và \(\Delta CDP\) có:

\(AD = DC\) (gt)

\(\widehat {ADQ} = \widehat {CDP}\) (đối đỉnh)

\(PD = DQ\) (cmt)

Suy ra \(\Delta ADQ = \Delta CDP\) (c.g.c)

Suy ra \(\widehat {DAQ} = \widehat {DCP}\) (hai góc tương ứng).

Mà hai góc ở vị trí so le trong nên \(CP\parallel AQ\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đb) Sc) Đ d) Đ

Cho tam giác   A B C   có   A B > A C .   Từ   A   hạ   A H ⊥ B C  , trên đường thẳng   A H   lấy điểm   M   tùy ý.  a)   B H > H C .    b)   M B < M C .    c)   M H < A H .    d)   B A > B M . (ảnh 1)

Do \(AB > AC\) (giả thiết)

Suy ra \(BH > HC\) (đường xiên lớn hơn thì hình chiếu lớn hơn)

Xét hai đường xiên \(MB\) và \(MC\) có \(BH > HC\) (cmt)

Do đó, \(MB > MC\) (hình chiếu lớn hơn thì đường xiên lớn hơn)

Ta có: \(BH\) là đường vuông góc với đường thẳng \(AH\).

Lại theo giả thiết điểm \(M\) nằm giữa hai điểm \(A\) và \(H\).

Nên \(MH < AH.\)

Suy ra \(BM < BA\) (hình chiếu lớn hơn thì đường xiên lớn hơn).

Do đó, \(BA > BM.\)

Lời giải

Hướng dẫn giải

Đáp án: \( - 34\)

Ta có: \(\frac{x}{4} = \frac{y}{9} = \frac{{x - y}}{{4 - 9}} = \frac{{10}}{{ - 5}} = - 2\).

Do đó, \(\frac{x}{4} = - 2\) nên \(x = - 2.4 = - 8\).

\(\frac{y}{9} = - 2\) nên \(y = - 2.9 = - 18\).

Do đó, \(A = 2x + y = 2.\left( { - 8} \right) + \left( { - 18} \right) = - 34\).

Vậy \(A = - 34.\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP