Câu hỏi:

30/06/2025 10

Cho tam giác \(ABC\) có chu vi bằng \(18{\rm{ cm}}\) và \(BC > AC > AB\). Tính độ dài \(BC\) biết rằng độ dài đó là một số tự nhiên chẵn (đơn vị: cm)

Trả lời:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án: \(8\)

Theo đề, ta có: \(BC > AC\) và \(BC > AB\) nên \(BC + BC + BC > AB + AC + BC\) hay \(3.BC > 18\) và \(BC > 6{\rm{ cm}}\) (1)

Lại có: \(BC < AC + AB\) (theo bất đẳng thức tam giác)

Suy ra \(BC + BC < AC + AB + BC\) hay \(2.BC < 18\) suy ra \(BC < 9{\rm{ cm}}\) (2)

Từ (1) và (2) suy ra \(6{\rm{ cm}} < BC < 9{\rm{ cm}}\).

Mà theo đề, \(BC\) có độ dài là một số tự nhiên chẵn, suy ra \(BC = 8{\rm{ cm}}{\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đb) Đc) Sd) Đ

Gọi \(x;y;z\) lần lượt là số áo khoác chị Linh mua gồm áo phông màu trắng, áo phông màu đen và áo phông màu xanh.

Điều kiện của \(x;y;z\) là \(x,y,z \in {\mathbb{N}^*}\) và \(x,y,z < 111.\)

Phương trình biểu diễn tổng số áo chị Linh bán được là \(x + y + z = 111\).

Vì số tiền chị Linh bán được của mỗi loại áo phông là như nhau nên ta có tỉ lệ thức \(100x = 80y = 120z\) hay \(\frac{x}{{\frac{1}{{100}}}} = \frac{y}{{\frac{1}{{80}}}} = \frac{z}{{\frac{1}{{120}}}}\).

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{{\frac{1}{{100}}}} = \frac{y}{{\frac{1}{{80}}}} = \frac{z}{{\frac{1}{{120}}}} = \frac{{x + y + z}}{{\frac{1}{{100}} + \frac{1}{{80}} + \frac{1}{{120}}}} = \frac{{111}}{{\frac{{37}}{{1200}}}} = 3{\rm{ }}600\).

Suy ra \(x = \frac{1}{{100}}.3{\rm{ }}600 = 36;y = \frac{1}{{80}}.3{\rm{ }}600 = 45;z = \frac{1}{{120}}.3{\rm{ }}600 = 30\)

Vậy chị Linh bán số áo phông màu trắng, đen, xanh lần lượt là \(36\) áo, \(45\) áo và \(30\) áo.

Do đó, chị Linh bán số áo phông đen nhiều hơn số áo phông xanh là \(15\) chiếc áo.

Câu 2

Lời giải

Đáp án đúng là: C

Cho tam giác   A B C   nhọn có hai đường trung tuyến   A M   và   B N   cắt nhau tại   O  . Khẳng định nào sau đây là sai? (ảnh 1)

Tam giác \(ABC\) nhọn có hai đường trung tuyến \(AM\) và \(BN\) cắt nhau tại \(O\) thì \(O\) là trọng tâm của tam giác.

Do đó, \(OA = \frac{2}{3}AM,{\rm{ }}OM = \frac{1}{3}AM,{\rm{ }}ON = \frac{1}{3}BN.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP