Câu hỏi:
30/06/2025 18
1.1. Tìm \[x\], biết:
a) \(\frac{5}{{ - 3}} = \frac{x}{9}\); b) \(\frac{{x - 3}}{7} = \frac{3}{{10}}\).
1.2. Ba công ty \(A,B,C\) thỏa thuận góp vốn để mở rộng sản xuất. Số tiền góp vốn của ba công ty \(A,B,C\) lần lượt tỉ lệ với ba số \[7;9;8\]. Tính số tiền lãi mỗi công ty nhận được (chia theo tỉ lệ góp vốn) biết sau một năm mở rộng sản xuất thì ba công ty lãi được tổng \[1,2\] tỉ đồng.
1.1. Tìm \[x\], biết:
a) \(\frac{5}{{ - 3}} = \frac{x}{9}\); b) \(\frac{{x - 3}}{7} = \frac{3}{{10}}\).
1.2. Ba công ty \(A,B,C\) thỏa thuận góp vốn để mở rộng sản xuất. Số tiền góp vốn của ba công ty \(A,B,C\) lần lượt tỉ lệ với ba số \[7;9;8\]. Tính số tiền lãi mỗi công ty nhận được (chia theo tỉ lệ góp vốn) biết sau một năm mở rộng sản xuất thì ba công ty lãi được tổng \[1,2\] tỉ đồng.
Quảng cáo
Trả lời:
1.1. a) \(\frac{5}{{ - 3}} = \frac{x}{9}\)
\( - 3x = 5.9\)
\( - 3x = 45\)
\(x = 45:\left( { - 3} \right)\)
\(x = - 15\)
Vậy \(x = - 15\).b) \(\frac{{x - 3}}{7} = \frac{3}{{10}}\)
\(10\left( {x - 3} \right) = 3.7\)
\(10x - 30 = 21\)
\(10x = 51\)
\(x = \frac{{51}}{{10}}\)
Vậy \(x = \frac{{51}}{{10}}\).1.2. Gọi số tiền lãi ba công ty \(A,B,C\) nhận được lần lượt là \[x,y,z\] (triệu đồng).
Do số tiền lãi nhận được chia theo tỉ lệ góp vốn mà số tiền góp vốn của ba công ty \(A,B,C\) lần lượt tỉ lệ với ba số \[7;9;8\] nên \(\frac{x}{7} = \frac{y}{9} = \frac{z}{8}\).
Tổng số tiền lãi ba công ty có là \[1,2\] tỉ đồng (1 200 triệu đồng) nên \(x + y + z = 1\,\,200\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{7} = \frac{y}{9} = \frac{z}{8} = \frac{{x + y + z}}{{7 + 9 + 8}} = \frac{{1200}}{{24}} = 50\)
Suy ra \[\left\{ \begin{array}{l}x = 7.50 = 350\\y = 9.50 = 450\\z = 8.50 = 400\end{array} \right.\]
Vậy số tiền lãi ba công ty \(A,B,C\) nhận được lần lượt là 350 triệu đồng, 450 triệu đồng, 400 triệu đồng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Phần thể tích ngôi nhà bằng tổng thể tích phần hình hộp chữ nhật có kích thước \({\rm{20 m}}{\rm{, 15 m}}{\rm{, 8 m}}\)và hình lăng trụ đứng tam giác có kích thước chiều cao là \(20{\rm{ m}}\), cạnh đáy là \({\rm{15 m}}{\rm{,}}\) chiều cao đáy là \({\rm{7 m}}\).
Vậy thể tích phần không gian được giới hạn bởi ngôi nhà là:
\(15.20.8 + \frac{1}{2}.7.15.20 = 3{\rm{ }}450{\rm{ }}\left( {{{\rm{m}}^3}} \right)\)
b) Diện tích xung quanh của ngôi nhà là: \(2\left( {15 + 20} \right).8 + 2.\frac{1}{2}.7.15 = 665{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Diện tích tường cần sơn là: \(665 - 25 = 640\) (m2)
Số lít sơn cần mua là: \(640:8 = 80\) (lít)
Lời giải
a) Xét \(\Delta ADB\) và \(\Delta AEC\) có: \(\widehat {ADB} = \widehat {AEC} = 90^\circ \); \(AB = AC\) (do \(\Delta ABC\) cân tại \(A\)); \(\widehat {BAC}\) là góc chung. Do đó \(\Delta ADB = \Delta AEC\) (cạnh huyền – góc nhọn). Suy ra \(AD = AE\) (hai cạnh tương ứng). Mà \(AB = AC\) (chứng minh trên) Nên \(AB - AE = AC - AD\) hay \(BE = CD\).
|
![]() |
b) Do \(\Delta ADB = \Delta AEC\) (câu a) nên \(\widehat {ABD} = \widehat {ACE}\) (hai góc tương ứng)
Xét \(\Delta BHE\) và \(\Delta CHD\) có:
\(\widehat {BEH} = \widehat {CDH} = 90^\circ \);
\(BE = CD\) (chứng minh câu a);
\(\widehat {EBH} = \widehat {DCH}\)(chứng minh trên).
Do đó \(\Delta BHE = \Delta CHD\) (cạnh góc vuông – góc nhọn kề)
Suy ra \(HB = HC\) (hai cạnh tương ứng)
Tam giác \(HBC\) có \(HB = HC\) nên là tam giác cân tại \(H\).
Xét \(\Delta HDC\) vuông tại \(D\) có \(HC\) là cạnh huyền nên là cạnh có độ dài lớn nhất.
Do đó \(HC > HD\).
Mà \(HB = HC\) (chứng minh trên) nên \(HB > HD.\)
c) Gọi \[P\] là giao điểm của \[HI\] và \[BC\].
\(\Delta HBC\) có hai đường trung tuyến \[BM\] và \[CN\] cắt nhau tại \[I\].
Do đó \[I\] là trọng tâm của \(\Delta HBC\) nên \[HP\] là đường trung tuyến xuất phát từ đỉnh \[H\] của tam giác.
Mà \(\Delta HBC\) cân tại \(H\) nên đường trung tuyến \[HP\] đồng thời là đường cao của tam giác.
Suy ra \(HP \bot BC\) hay \(HI \bot BC\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\)
\(\Delta ABC\) có \[H\] là giao điểm của hai đường cao \[BD\] và \[CE\] nên \[H\] là trực tâm của \(\Delta ABC\).
Do đó \(AH \bot BC\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra ba điểm \(A,H,I\) cùng nằm trên một đường thẳng vuông góc với \[BC\] tại \(P\).
Hay ba điểm \(A,H,I\) thẳng hàng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.