Câu hỏi:

30/06/2025 25 Lưu

Có hai chiếc hộp, hộp \(A\) đựng 5 quả bóng ghi các số \(1;3;5;7;9\); hộp \(B\) đựng 5 quả bóng ghi các số \(2;4;6;8;10\). Lấy ngẫu nhiên một quả bóng từ mỗi hộp. Xét các biến cố sau:

\(M\): “Tổng các số ghi trên hai quả bóng lớn hơn 2”.

\(N\): “Tích các số ghi trên hai quả bóng bằng 30”.

\(P\): “Chênh lệch giữa hai số ghi trên hai quả bóng bằng 10”.

     a) Trong các biến cố trên, hãy chỉ ra biến cố nào là biến cố chắc chắn, biến cố nào là biến cố không thể.

     b) Lấy ngẫu nhiên một quả bóng từ hộp \(A\). Tính xác suất của biến cố \(Q\): “Số ghi trên quả bóng là số nguyên tố”.

     c) Lấy ngẫy nhiên một quả bóng từ hộp \(B\). Tính xác suất của biến cố \(T\): “Số ghi trên quả bóng là ước của 16”.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Biến cố chắc chắn là biến cố \(M\): “Tổng các số ghi trên hai quả bóng lớn hơn 2”, vì hai số nhỏ nhất ghi trên mỗi quả bóng lấy từ hai hộp lần lượt là \(1\) và \(2\) nên tổng các số gho trên hai quả bóng nhỏ nhất là \(3\), chắc chắn lớn hơn \(2.\)

Biến cố không thể là biến cố \(P\): “Chênh lệch giữa hai số ghi trên hai quả bóng bằng 10”. Vì chênh lệch lớn nhất giữa hai số lấy được trên mỗi quả bóng từ hai hộp là 9, khi hộp \(A\) lấy được số 1 và hộp \(B\) lấy được số \(10\).

b) Trong năm quả bóng từ hộp \(A\) ghi các số \(1;3;5;7;9\) có ba số nguyên tố là \(3;5;7\).

Do đó, xác suất của biến cố \(Q\) là \(\frac{3}{5}.\)

c) Trong năm quả bóng từ hộp \(B\) ghi các số \(2;4;6;8;10\) có các số là ước của \(16\) là: \(2;4;8\).

Do đó, xác suất của biến cố \(P\) là \(\frac{3}{5}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Phần thể tích ngôi nhà bằng tổng thể tích phần hình hộp chữ nhật có kích thước \({\rm{20 m}}{\rm{, 15 m}}{\rm{, 8 m}}\)và hình lăng trụ đứng tam giác có kích thước chiều cao là \(20{\rm{ m}}\), cạnh đáy là \({\rm{15 m}}{\rm{,}}\) chiều cao đáy là \({\rm{7 m}}\).

Vậy thể tích phần không gian được giới hạn bởi ngôi nhà là:

\(15.20.8 + \frac{1}{2}.7.15.20 = 3{\rm{ }}450{\rm{ }}\left( {{{\rm{m}}^3}} \right)\)

b) Diện tích xung quanh của ngôi nhà là: \(2\left( {15 + 20} \right).8 + 2.\frac{1}{2}.7.15 = 665{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

Diện tích tường cần sơn là: \(665 - 25 = 640\) (m2)

Số lít sơn cần mua là: \(640:8 = 80\) (lít)

Lời giải

a) Xét \(\Delta ADB\) và \(\Delta AEC\) có:

\(\widehat {ADB} = \widehat {AEC} = 90^\circ \);

\(AB = AC\) (do \(\Delta ABC\) cân tại \(A\));

\(\widehat {BAC}\) là góc chung.

Do đó \(\Delta ADB = \Delta AEC\) (cạnh huyền – góc nhọn).

Suy ra \(AD = AE\) (hai cạnh tương ứng).

Mà \(AB = AC\) (chứng minh trên)

Nên \(AB - AE = AC - AD\) hay \(BE = CD\).
Cho \(\Delta ABC\) cân tại \(A\) có các đường cao \(BD,CE\) cắt nhau tại \(H\). 	a) Chứng minh rằng \(\Delta ADB = \Delta AEC\) và \(BE = CD\). 	b) Chứng minh \(\Delta HBC\) là tam giác cân. So sánh \(HB\) và \(HD\). 	c) Gọi \(M\) là trung điểm của \(HC,\) \(N\) là trung điểm của \(HB\), \(I\) là giao điểm của \(BM\) và \(CN\).  	Chứng minh rằng \(A,H,I\) thẳng hàng. (ảnh 1)

b) Do \(\Delta ADB = \Delta AEC\) (câu a) nên \(\widehat {ABD} = \widehat {ACE}\) (hai góc tương ứng)

Xét \(\Delta BHE\) và \(\Delta CHD\) có:

\(\widehat {BEH} = \widehat {CDH} = 90^\circ \);

\(BE = CD\) (chứng minh câu a);

\(\widehat {EBH} = \widehat {DCH}\)(chứng minh trên).

Do đó \(\Delta BHE = \Delta CHD\) (cạnh góc vuông – góc nhọn kề)

Suy ra \(HB = HC\) (hai cạnh tương ứng)

Tam giác \(HBC\) có \(HB = HC\) nên là tam giác cân tại \(H\).

Xét \(\Delta HDC\) vuông tại \(D\) có \(HC\) là cạnh huyền nên là cạnh có độ dài lớn nhất.

Do đó \(HC > HD\).

Mà \(HB = HC\) (chứng minh trên) nên \(HB > HD.\)

c) Gọi \[P\] là giao điểm của \[HI\] và \[BC\].

\(\Delta HBC\) có hai đường trung tuyến \[BM\] và \[CN\] cắt nhau tại \[I\].

Do đó \[I\] là trọng tâm của \(\Delta HBC\) nên \[HP\] là đường trung tuyến xuất phát từ đỉnh \[H\] của tam giác.

Mà \(\Delta HBC\) cân tại \(H\) nên đường trung tuyến \[HP\] đồng thời là đường cao của tam giác.

Suy ra \(HP \bot BC\) hay \(HI \bot BC\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\)

\(\Delta ABC\) có \[H\] là giao điểm của hai đường cao \[BD\] và \[CE\] nên \[H\] là trực tâm của \(\Delta ABC\).

Do đó \(AH \bot BC\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra ba điểm \(A,H,I\) cùng nằm trên một đường thẳng vuông góc với \[BC\] tại \(P\).

Hay ba điểm \(A,H,I\) thẳng hàng.