Câu hỏi:
30/06/2025 12
Một công trường dự định phân chia số đất cho ba đội I, II, III với tỉ lệ \(7;6;5\). Nhưng sau đó vì số người của các đội thay đổi nên đã chia lại tỉ lệ với \(6;5;4\). Như vậy có một đội nhiều hơn so với dự định là \(6{\rm{ }}{{\rm{m}}^3}\) đất. Tính số đất đã phân chia theo dự định cho mỗi đội.
Một công trường dự định phân chia số đất cho ba đội I, II, III với tỉ lệ \(7;6;5\). Nhưng sau đó vì số người của các đội thay đổi nên đã chia lại tỉ lệ với \(6;5;4\). Như vậy có một đội nhiều hơn so với dự định là \(6{\rm{ }}{{\rm{m}}^3}\) đất. Tính số đất đã phân chia theo dự định cho mỗi đội.
Quảng cáo
Trả lời:
Gọi số đất dự định phân chia cho ba đội I, II, III lần lượt là \(a;b;c\) và số đất sau khi thay đổi đã chia lại cho ba đội lần lượt là \(a';b';c'\) \(\left( {a,b,c,a',b',c' > 0,{\rm{ }}{{\rm{m}}^3}} \right)\).
Gọi tổng số đất đã phân chia cho các đội là \(k{\rm{ }}\left( {k > 0,{\rm{ }}{{\rm{m}}^3}} \right)\).
Theo đề, dự định phân chia số đất cho ba đội I, II, III với tỉ lệ \(7;6;5\) nên ta có:
\(\frac{a}{7} = \frac{b}{6} = \frac{c}{5} = \frac{{a + b + c}}{{18}} = \frac{k}{{18}}\).
Do đó, ta suy ra \(a = \frac{{7k}}{{18}};b = \frac{{6k}}{{18}};c = \frac{{5k}}{{18}}\) (1)
Sau khi chia số đất ba đội tỉ lệ với \(6;5;4\) nên ta có: \(\frac{{a'}}{6} = \frac{{b'}}{5} = \frac{{c'}}{4} = \frac{{a' + b' + c'}}{{15}} = \frac{k}{{15}}\).
Do đó, suy ra \(a' = \frac{{6k}}{{15}};b = \frac{{5k}}{{15}};c = \frac{{4k}}{{15}}\) (2)
So sánh (1) và (2), ta nhận thấy \(a < a';{\rm{ }}b = b';{\rm{ }}c > c'\).
Suy ra đội I nhận nhiều hơn so với dự định.
Từ đây, ta có: \(a - a' = 6\) hay \(\frac{{6k}}{{15}} - \frac{{7k}}{{18}} = 6\) hay \(k\left( {\frac{6}{{15}} - \frac{7}{{18}}} \right) = 6\) suy ra \(k = 540\).
Do đó, số đất đã chia theo dự định là:
\(a = \frac{{7k}}{{18}} = \frac{{7.540}}{{18}} = 210;{\rm{ }}b = \frac{{6k}}{{18}} = \frac{{6.540}}{{18}} = 180;{\rm{ }}c = \frac{{5k}}{{18}} = \frac{{5.540}}{{18}} = 150\).
Vật theo dự định, đội I được chia 210 m3 đất, đội II được chia 180 m3 đất và đội III được chia 150 m3 đất.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Phần thể tích ngôi nhà bằng tổng thể tích phần hình hộp chữ nhật có kích thước \({\rm{20 m}}{\rm{, 15 m}}{\rm{, 8 m}}\)và hình lăng trụ đứng tam giác có kích thước chiều cao là \(20{\rm{ m}}\), cạnh đáy là \({\rm{15 m}}{\rm{,}}\) chiều cao đáy là \({\rm{7 m}}\).
Vậy thể tích phần không gian được giới hạn bởi ngôi nhà là:
\(15.20.8 + \frac{1}{2}.7.15.20 = 3{\rm{ }}450{\rm{ }}\left( {{{\rm{m}}^3}} \right)\)
b) Diện tích xung quanh của ngôi nhà là: \(2\left( {15 + 20} \right).8 + 2.\frac{1}{2}.7.15 = 665{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Diện tích tường cần sơn là: \(665 - 25 = 640\) (m2)
Số lít sơn cần mua là: \(640:8 = 80\) (lít)
Lời giải
1.1. a) \(\frac{5}{{ - 3}} = \frac{x}{9}\)
\( - 3x = 5.9\)
\( - 3x = 45\)
\(x = 45:\left( { - 3} \right)\)
\(x = - 15\)
Vậy \(x = - 15\).b) \(\frac{{x - 3}}{7} = \frac{3}{{10}}\)
\(10\left( {x - 3} \right) = 3.7\)
\(10x - 30 = 21\)
\(10x = 51\)
\(x = \frac{{51}}{{10}}\)
Vậy \(x = \frac{{51}}{{10}}\).1.2. Gọi số tiền lãi ba công ty \(A,B,C\) nhận được lần lượt là \[x,y,z\] (triệu đồng).
Do số tiền lãi nhận được chia theo tỉ lệ góp vốn mà số tiền góp vốn của ba công ty \(A,B,C\) lần lượt tỉ lệ với ba số \[7;9;8\] nên \(\frac{x}{7} = \frac{y}{9} = \frac{z}{8}\).
Tổng số tiền lãi ba công ty có là \[1,2\] tỉ đồng (1 200 triệu đồng) nên \(x + y + z = 1\,\,200\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{7} = \frac{y}{9} = \frac{z}{8} = \frac{{x + y + z}}{{7 + 9 + 8}} = \frac{{1200}}{{24}} = 50\)
Suy ra \[\left\{ \begin{array}{l}x = 7.50 = 350\\y = 9.50 = 450\\z = 8.50 = 400\end{array} \right.\]
Vậy số tiền lãi ba công ty \(A,B,C\) nhận được lần lượt là 350 triệu đồng, 450 triệu đồng, 400 triệu đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.