1.1. Tìm \(x,\)biết:
a) \(\frac{x}{3} = \frac{{ - 10}}{6};\) b) \(\frac{{2 - x}}{4} = \frac{{x - 3}}{{ - 5}}\).
1.2. Ba đội y tế tiêm ngừa vaccine Covid – 19 tại ba trường THCS trong quận có cùng số lượng học sinh đăng kí tiêm chủng như nhau. Đội thứ nhất tiêm xong trong 5 ngày, đội thứ hai tiêm xong trong 4 ngày và đội thứ ba tiêm xong trong 6 ngày. Hỏi mỗi đội có bao nhiêu cán bộ y tế, biết cả ba đội có tất cả 37 cán bộ? (Năng suất làm việc của các cán bộ y tế là như nhau)
1.1. Tìm \(x,\)biết:
a) \(\frac{x}{3} = \frac{{ - 10}}{6};\) b) \(\frac{{2 - x}}{4} = \frac{{x - 3}}{{ - 5}}\).
1.2. Ba đội y tế tiêm ngừa vaccine Covid – 19 tại ba trường THCS trong quận có cùng số lượng học sinh đăng kí tiêm chủng như nhau. Đội thứ nhất tiêm xong trong 5 ngày, đội thứ hai tiêm xong trong 4 ngày và đội thứ ba tiêm xong trong 6 ngày. Hỏi mỗi đội có bao nhiêu cán bộ y tế, biết cả ba đội có tất cả 37 cán bộ? (Năng suất làm việc của các cán bộ y tế là như nhau)
Quảng cáo
Trả lời:

1.1.
a) \(\frac{x}{3} = \frac{{ - 10}}{6}\) \(6x = - 10.3\) \(6x = - 30\) \(x = - 30:6\) \(x = - 5\) Vậy \(x = - 5\). |
b) \(\frac{{2 - x}}{4} = \frac{{x - 3}}{{ - 5}}\) \( - 5\left( {2 - x} \right) = 4\left( {x - 3} \right)\) \( - 10 + 5x = 4x - 12\) \(x = - 12 + 10\) \(x = - 2\) Vậy \(x = - 2\). |
1.2. Gọi số cán bộ y tế ở đội thứ nhất, đội thứ hai, đội thứ ba lần lượt là \(x,y,z\) (người) với \(x,y,z \in {\mathbb{N}^*}.\)
Vì cả ba đội y tế có tất cả 37 cán bộ y tế nên \(x + y + z = 37\).
Ta có: \(x\) tiêm xong trong 5 ngày, \(y\) tiêm xong trong 4 ngày, \(z\) tiêm xong trong 6 ngày.
Vì số cán bộ y tế và thời gian là hai đại lượng tỉ lệ nghịch nên ta có: \(5x = 4y = 6z\) hay \(\frac{x}{{12}} = \frac{y}{{15}} = \frac{z}{{10}}.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{x}{{12}} = \frac{y}{{15}} = \frac{z}{{10}} = \frac{{x + y + z}}{{12 + 15 + 10}} = \frac{{37}}{{37}} = 1\).
Do đó, ta có: \(\frac{x}{{12}} = 1\) nên \(x = 12,\) \(\frac{y}{{15}} = 1\) nên \(y = 15\); \(\frac{z}{{10}} = 1\) nên \(z = 10\).
Vậy số cán bộ y tế ở đội thứ nhất, thứ hai, thứ ba lần lượt là 12, 15, 10 người.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đổi \(80{\rm{ dm}} = 8{\rm{ m}}\).
Thể tích của cái bục là: \(\frac{{\left( {9 + 15} \right).8}}{2}.20 = 1{\rm{ }}920{\rm{ }}\left( {{{\rm{m}}^3}} \right)\).
b) Diện tích cần phải sơn chính là diện tích toàn phần của hình lăng trụ đứng.
Diện tích xung quanh của hình lăng trụ đứng là: \(20.\left( {8 + 9 + 10 + 15} \right) = 840{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Diện tích hai đáy của lăng trụ đứng là: \(\frac{{2.\left( {9 + 15} \right).8}}{2} = 192{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Diện tích cần sơn của bục hình lăng trụ đứng này là: \(840 + 192 = 1{\rm{ }}032{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Vậy số tiền cần trả để sơn được cái bục đó là: \(1{\rm{ }}032.15{\rm{ 000}} = 15{\rm{ }}480{\rm{ }}000\) (đồng).
Lời giải
a) Tập hợp gồm các kết quả có thể xảy ra đối với số xuất hiện trên quả bóng được rút ra là:
\(A = \left\{ {12;13;14;15;16;17} \right\}\).
Do đó, có 6 kết quả có thể xảy ra.
b) Kết quả thuận lợi cho biến cố \(B\) là \(12\). Do đó có 1 kết quả thuận lợi cho biến cố này.
Xác suất của biến cố \(B\) là \(\frac{1}{6}\).
c) Kết quả thuận lợi cho biến cố \(C\) là \(14;17\). Do đó, có 2 kết quả thuận lợi cho biến cố này.
Xác suất của biến cố \(C\) là \(\frac{2}{6} = \frac{1}{3}\).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.