Câu hỏi:

30/06/2025 10

1.1. Tìm \(x,\)biết:

     a) \(\frac{x}{3} = \frac{{ - 10}}{6};\)          b) \(\frac{{2 - x}}{4} = \frac{{x - 3}}{{ - 5}}\).

1.2. Ba đội y tế tiêm ngừa vaccine Covid – 19 tại ba trường THCS trong quận có cùng số lượng học sinh đăng kí tiêm chủng như nhau. Đội thứ nhất tiêm xong trong 5 ngày, đội thứ hai tiêm xong trong 4 ngày và đội thứ ba tiêm xong trong 6 ngày. Hỏi mỗi đội có bao nhiêu cán bộ y tế, biết cả ba đội có tất cả 37 cán bộ? (Năng suất làm việc của các cán bộ y tế là như nhau)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1.1.

a) \(\frac{x}{3} = \frac{{ - 10}}{6}\)

\(6x =  - 10.3\)

\(6x =  - 30\)

\(x =  - 30:6\)

\(x =  - 5\)

Vậy \(x =  - 5\).

b) \(\frac{{2 - x}}{4} = \frac{{x - 3}}{{ - 5}}\)

\( - 5\left( {2 - x} \right) = 4\left( {x - 3} \right)\)

\( - 10 + 5x = 4x - 12\)

\(x =  - 12 + 10\)

\(x =  - 2\)

Vậy \(x =  - 2\).

1.2. Gọi số cán bộ y tế ở đội thứ nhất, đội thứ hai, đội thứ ba lần lượt là \(x,y,z\) (người) với \(x,y,z \in {\mathbb{N}^*}.\)

Vì cả ba đội y tế có tất cả 37 cán bộ y tế nên \(x + y + z = 37\).

Ta có: \(x\) tiêm xong trong 5 ngày, \(y\) tiêm xong trong 4 ngày, \(z\) tiêm xong trong 6 ngày.

Vì số cán bộ y tế và thời gian là hai đại lượng tỉ lệ nghịch nên ta có: \(5x = 4y = 6z\) hay \(\frac{x}{{12}} = \frac{y}{{15}} = \frac{z}{{10}}.\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{x}{{12}} = \frac{y}{{15}} = \frac{z}{{10}} = \frac{{x + y + z}}{{12 + 15 + 10}} = \frac{{37}}{{37}} = 1\).

Do đó, ta có: \(\frac{x}{{12}} = 1\) nên \(x = 12,\) \(\frac{y}{{15}} = 1\) nên \(y = 15\); \(\frac{z}{{10}} = 1\) nên \(z = 10\).

Vậy số cán bộ y tế ở đội thứ nhất, thứ hai, thứ ba lần lượt là 12, 15, 10 người.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho \(\Delta ABC\) cân tại \(A\) (\(\widehat A < 90^\circ \)). Kẻ \(BD \bot AC\) tại \(D\) và \(CE \bot AB\) tại \(E\).  	a) Chứng minh \(\Delta ABD = \Delta ACE\), từ đó suy ra \(\widehat {ABD} = \widehat {ACE}\). 	b) Gọi \(H\) là giao điểm của \(BD\) và \(CE\).  	Chứng minh \(\Delta BHC\) là tam giác cân. So sánh \(HB\) và \(HD.\) 	c) Trên tia đối của tia \(EH\), lấy điểm \(P\) sao cho \(PH < HC\). Trên tia đối của tia \(DH\), lấy điểm \(Q\) sao cho \(QH = HP\). Chứng minh các đường thẳng \(BP\), \(AH\), \(CQ\) đồng quy. (ảnh 1)

a) Xét \(\Delta ABD\) và \(\Delta ACE\), có:

\(\widehat {ADB} = \widehat {AEC} = 90^\circ \);

\[AB = AC\] (do \(\Delta ABC\) cân tại \(A\));

\(\widehat {BAC}\) là góc chung.

Do đó \(\Delta ABD = \Delta ACE\) (cạnh huyền – góc nhọn).

Suy ra \(\widehat {ABD} = \widehat {ACE}\) (cặp góc tương ứng).

b) Ta có \(\widehat {ABD} = \widehat {ACE}\) (câu a)

Lại có \(\widehat {ABC} = \widehat {ACB}\) (do \(\Delta ABC\) cân tại \(A\)).

Do đó \(\widehat {ABC} - \widehat {ABD} = \widehat {ACB} - \widehat {ACE}\) hay \(\widehat {HBC} = \widehat {HCB}\).

\(\Delta BHC\) có \(\widehat {HBC} = \widehat {HCB}\) nên là tam giác cân tại \(H\).

Suy ra \(HB = HC\,\,\,\,\left( 1 \right)\)

Ta có \(\Delta HCD\) vuông tại \(D\) nên cạnh huyền \(HC\) là lớn nhất.

Do đó \(HC > HD\,\,\,\,\left( 2 \right)\).

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có \(HB > HD\).

c) Gọi \(I\) là giao điểm của \(BP\) và \(CQ\).

Xét \(\Delta BPH\) và \(\Delta CQH\), có:

\(HP = HQ\) (giả thiết);

\(\widehat {BHP} = \widehat {CHQ}\) (hai góc đối đỉnh);

\(HB = HC\) (câu b).

Do đó \(\Delta BPH = \Delta CQH\,\,\left( {{\rm{c}}{\rm{.g}}{\rm{.c}}} \right)\).

Suy ra \(\widehat {HBP} = \widehat {HCQ}\) (cặp góc tương ứng).

Mà \(\widehat {HBC} = \widehat {HCB}\) (câu b).

Suy ra \(\widehat {HBC} + \widehat {HBP} = \widehat {HCB} + \widehat {HCQ}\) hay \(\widehat {IBC} = \widehat {ICB}\).

\(\Delta IBC\) có \(\widehat {IBC} = \widehat {ICB}\) nên là tam giác cân tại \(I\).

Suy ra \(IB = IC\).

Mà \(AB = AC\) (câu a) và \(HB = HC\) (câu b).

Do đó ba điểm \(I\), \(A\), \(H\) cùng nằm trên đường trung trực của đoạn thẳng \(BC\).

Hay \(I\), \(A\), \(H\) thẳng hàng.

Vậy ba đường thẳng \(BP\), \(CQ\), \(AH\) đồng quy.

Lời giải

2.1. Thay \(x =  - 1;y = 1;z =  - 1\) vào biểu thức \(H = xy - xz + yz\), ta được:

            \(H = \left( { - 1} \right).1 - \left( { - 1} \right).\left( { - 1} \right) + 1.\left( { - 1} \right) =  - 1 - 1 - 1 =  - 3\).

Vậy giá trị của biểu thức \(H =  - 3\).

2.2. a) \(A\left( x \right) = \frac{5}{6}{x^3} - \frac{{12}}{7}{x^2} + 5x + \frac{5}{7}{x^2} + \frac{1}{6}{x^3} - 3x + 9\)

             \( = \left( {\frac{5}{6} + \frac{1}{6}} \right){x^3} + \left( { - \frac{{12}}{7} + \frac{5}{7}} \right){x^2} + \left( {5 - 3} \right)x + 9\)

             \( = {x^3} - {x^2} + 2x + 9\).

b) Hệ số tự do của đa thức \(A\left( x \right)\) là 9.

Ta có \(A\left( 2 \right) = {2^3} - {2^2} + 2.2 + 9 = 17\).

c) Ta có \(A\left( x \right) + C\left( x \right) = B\left( x \right)\).

Suy ra \(C\left( x \right) = B\left( x \right) - A\left( x \right)\)

                    \( = {x^3} - 2{x^2} + 9x - 3 - \left( {{x^3} - {x^2} + 2x + 9} \right)\)

                    \( = {x^3} - 2{x^2} + 9x - 3 - {x^3} + {x^2} - 2x - 9\)

                    \( =  - {x^2} + 7x - 12\).

Để tìm nghiệm của đa thức \(C\left( x \right)\), ta cho \(C\left( x \right) = 0\)

Do đó \( - {x^2} + 7x - 12 = 0\)

           \( - {x^2} + 4x + 3x - 12 = 0\)

           \( - x\left( {x - 4} \right) + 3\left( {x - 4} \right) = 0\)

           \(\left( { - x + 3} \right)\left( {x - 4} \right) = 0\)

Suy ra \(x = 3\) hoặc \(x = 4\).

Vậy nghiệm của đa thức \(C\left( x \right)\) là \(x \in \left\{ {3;4} \right\}\).