Câu hỏi:
30/06/2025 8
1.1. Tìm \(x,\) biết:
a) \(\frac{2}{{ - x}} = \frac{4}{7}\); b) \(\frac{{0,25}}{{x + 2}} = \frac{{x + 2}}{4}\) (với \(x \ne - 2\)).
1.2. Hai thanh kim loại đồng chất có thể tích lần lượt là \(5\,\,{\rm{c}}{{\rm{m}}^3}\) và \(7\,\,{\rm{c}}{{\rm{m}}^3}\). Tính khối lượng của mỗi thanh kim loại, biết rằng thanh thứ hai nặng hơn thanh thứ nhất \(15,6\,\,{\rm{g}}\).
1.1. Tìm \(x,\) biết:
a) \(\frac{2}{{ - x}} = \frac{4}{7}\); b) \(\frac{{0,25}}{{x + 2}} = \frac{{x + 2}}{4}\) (với \(x \ne - 2\)).
1.2. Hai thanh kim loại đồng chất có thể tích lần lượt là \(5\,\,{\rm{c}}{{\rm{m}}^3}\) và \(7\,\,{\rm{c}}{{\rm{m}}^3}\). Tính khối lượng của mỗi thanh kim loại, biết rằng thanh thứ hai nặng hơn thanh thứ nhất \(15,6\,\,{\rm{g}}\).
Quảng cáo
Trả lời:
1.1.
a) \(\frac{2}{{ - x}} = \frac{4}{7}\) \( - 4x = 2.7\) \( - 4x = 14\) \(x = \frac{{ - 14}}{4}\) hay \(x = \frac{{ - 7}}{2}\). Vậy \(x = \frac{{ - 7}}{2}\). |
b) \(\frac{{0,25}}{{x + 2}} = \frac{{x + 2}}{4}\) (với \(x \ne - 2\)) \({\left( {x + 2} \right)^2} = 0,25.4\) \({\left( {x + 2} \right)^2} = 1\) \(x + 2 = 1\) hoặc \(x + 2 = - 1\) Suy ra \(x = - 1\) hoặc \(x = - 3\). Vậy giá trị của \(x\) thỏa mãn là \(\left\{ { - 1;3} \right\}.\) |
1.2. Gọi \(x,y\,\,\left( {\rm{g}} \right)\) lần lượt là khối lượng của thanh kim loại thứ nhất và thanh kim loại thứ hai.
Thanh thứ hai nặng hơn thanh thứ nhất \(15,6\,\,{\rm{g}}\) nên \(y - x = 15,6\).
Vì hai thanh kim loại đồng chất nên khối lượng và thể tích của mỗi thanh kim loại là hai đại lượng tỉ lệ thuận. Do đó, ta có \(\frac{x}{5} = \frac{y}{7}\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{5} = \frac{y}{7} = \frac{{y - x}}{{7 - 5}} = \frac{{15,6}}{2} = 7,8\).
Suy ra \(x = 7.8.5 = 39\); \(y = 7,8.7 = 54,6\).
Vậy khối lượng của thanh kim loại thứ nhất và thanh kim loại thứ hai lần lượt là \(39\,\,{\rm{g}}\) và \(54,6\,\,{\rm{g}}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Tập hợp gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra là:
\(A = \left\{ {1;2;3;4;.....,;27;28} \right\}\).
Vậy có \(28\) phần tử
b) Kết quả thuận lợi của biến cố \(B\) là: \(5;10;15;20;25\).
Do đó, có 5 kết quả thuận lợi cho biến cố này.
Xác suất của biến cố trên là \(\frac{5}{{28}}.\)
c) Kết quả thuận lợi cho biến cố \(C\) là: \(11;21\).
Do đó, có 2 kết quả thuận lợi cho biến cố này.
Xác suất của biến cố \(C\) là \(\frac{2}{{28}} = \frac{1}{{14}}.\)
Lời giải
2.1. Thay \(x = 1,y = 3\) vào biểu thức \(A = \frac{{x + {y^2}}}{5} + xy\), ta được: \(A = \frac{{1 + {3^2}}}{5} + 1.3 = 5\).
Vậy giá trị của biểu thức \(A = 5\) khi \(x = 1,y = 3\).
2.2. a) \(M\left( x \right) = 2{x^4} - 3{x^3} - x + 7{x^3} - 5x + 1\)
\[ = 2{x^4} + \left( { - 3{x^3} + 7{x^3}} \right) + \left( { - x - 5x} \right) + 1\]
\[ = 2{x^4} + 4{x^3} - 6x + 1\].
\(N\left( x \right) = - 2{x^3} + {x^2} + 3{x^4} + 5x - 2{x^4} - 6 + x\)
\( = \left( {3{x^4} - 2{x^4}} \right) - 2{x^3} + {x^2} + \left( {5x + x} \right) - 6\)
\( = {x^4} - 2{x^3} + {x^2} + 6x - 6\)
b) Đa thức \(N\left( x \right)\) có bậc là 4, hệ số cao nhất là 1.
c) Ta có \(Q\left( x \right) = M\left( x \right) + N\left( x \right)\)
\(Q\left( x \right) = \left( {2{x^4} + 4{x^3} - 6x + 1} \right) + \left( {{x^4} - 2{x^3} + {x^2} + 6x - 6} \right)\)
\( = 2{x^4} + 4{x^3} - 6x + 1 + {x^4} - 2{x^3} + {x^2} + 6x - 6\)
\( = 3{x^4} + 2{x^3} + {x^2} - 5\).
Ta có \(Q\left( x \right) = 3{x^4} + 2{x^3} + 4\)
Suy ra \(3{x^4} + 2{x^3} + {x^2} - 5 = 3{x^4} + 2{x^3} + 4\)
\({x^2} = 9\)
\(x = 3\) hoặc \(x = - 3\).
Vậy \(x \in \left\{ { - 3;3} \right\}\) thì \(Q\left( x \right) = 3{x^4} + 2{x^3} + 4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.