Câu hỏi:

30/06/2025 8

Một hộp có \(28\) chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số \(1,2,3,\)\(4,5,....,27,28\). Hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên một thẻ trong hộp.

     a) Viết tập hợp \(A\) gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra.

     b) Tính xác suất của biến cố \(B\): “Số xuất hiện trên thẻ được rút ra là số chia hết cho \(5\)”.

     c) Tính xác suất của biến cố \(C\): “Số xuất hiện trên thẻ được rút ra là số có hai chữ số và khi chia

         2 hay chia 5 đều dư 1”.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Tập hợp gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra là:

\(A = \left\{ {1;2;3;4;.....,;27;28} \right\}\).

Vậy có \(28\) phần tử

b) Kết quả thuận lợi của biến cố \(B\) là: \(5;10;15;20;25\).

Do đó, có 5 kết quả thuận lợi cho biến cố này.

Xác suất của biến cố trên là \(\frac{5}{{28}}.\)

c) Kết quả thuận lợi cho biến cố \(C\) là: \(11;21\).

Do đó, có 2 kết quả thuận lợi cho biến cố này.

Xác suất của biến cố \(C\) là \(\frac{2}{{28}} = \frac{1}{{14}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

2.1. Thay \(x = 1,y = 3\) vào biểu thức \(A = \frac{{x + {y^2}}}{5} + xy\), ta được: \(A = \frac{{1 + {3^2}}}{5} + 1.3 = 5\).

Vậy giá trị của biểu thức \(A = 5\) khi \(x = 1,y = 3\).

2.2. a) \(M\left( x \right) = 2{x^4} - 3{x^3} - x + 7{x^3} - 5x + 1\)

               \[ = 2{x^4} + \left( { - 3{x^3} + 7{x^3}} \right) + \left( { - x - 5x} \right) + 1\]

               \[ = 2{x^4} + 4{x^3} - 6x + 1\].

\(N\left( x \right) =  - 2{x^3} + {x^2} + 3{x^4} + 5x - 2{x^4} - 6 + x\)

         \( = \left( {3{x^4} - 2{x^4}} \right) - 2{x^3} + {x^2} + \left( {5x + x} \right) - 6\)

          \( = {x^4} - 2{x^3} + {x^2} + 6x - 6\)

b) Đa thức \(N\left( x \right)\) có bậc là 4, hệ số cao nhất là 1.

c) Ta có \(Q\left( x \right) = M\left( x \right) + N\left( x \right)\)

\(Q\left( x \right) = \left( {2{x^4} + 4{x^3} - 6x + 1} \right) + \left( {{x^4} - 2{x^3} + {x^2} + 6x - 6} \right)\)

         \( = 2{x^4} + 4{x^3} - 6x + 1 + {x^4} - 2{x^3} + {x^2} + 6x - 6\)

         \( = 3{x^4} + 2{x^3} + {x^2} - 5\).

Ta có \(Q\left( x \right) = 3{x^4} + 2{x^3} + 4\)

Suy ra \(3{x^4} + 2{x^3} + {x^2} - 5 = 3{x^4} + 2{x^3} + 4\)

           \({x^2} = 9\)

           \(x = 3\) hoặc \(x =  - 3\).

Vậy \(x \in \left\{ { - 3;3} \right\}\) thì \(Q\left( x \right) = 3{x^4} + 2{x^3} + 4\).

Lời giải

a) Thể tích nước trong thùng khi đổ \(150\) thùng nước vào bể là: \(150.15 = 2{\rm{ }}250\) (lít)

Đổi \(2{\rm{ }}250{\rm{ }}l = 2{\rm{ }}250{\rm{ d}}{{\rm{m}}^3} = 2,25{\rm{ }}{{\rm{m}}^3}\)

Chiều rộng của bể nước là \(2,25:\left( {2,5.0,5} \right) = 1,8{\rm{ }}\left( {\rm{m}} \right)\).

b) Khi đổ thêm 120 thùng nữa thì đầy bể, tức là khi đổ tất cả \(270\) thùng thì đầy bể.

Do đó, thể tích của bể nước là: \(270.15 = 4{\rm{ }}050\) (lít) = \(4,05{\rm{ }}{{\rm{m}}^3}\).

Chiều cao của bể nước là \(4,05:\left( {2,5.1,8} \right) = 0,9{\rm{ }}\left( {\rm{m}} \right)\).

Vậy chiều cao của bể nước là \(0,9{\rm{ m}}\).