Câu hỏi:

30/06/2025 25 Lưu

(3,0 điểm)

3.1. Cho đa thức \(A\left( x \right) = 3{x^2} - 4{x^4} - 5x + 9 + 6{x^4} + 2{x^3} - 5\).

a) Thu gọn và sắp xếp đa thức trên theo lũy thừa giảm dần của biến.

b) Chỉ ra hệ số cao nhất, hệ số tự do và bậc của đa thức \(A\left( x \right)\).

c) Tính giá trị \(A\left( { - 1} \right),A\left( 0 \right),A\left( 2 \right)\).

d) Tìm đa thức \(B\left( x \right),\) biết \(B\left( x \right) - 3{x^2} + 2{x^4} - {x^3} = A\left( x \right)\).

3.2. Tính giá trị của đa thức \(R\left( x \right) = {x^{10}} - 13{x^9} + 13{x^8} - 13{x^7} + ... + 13{x^2} - 13x + 10\) tại \(x = 12\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

3.1.

a) Ta có: \(A\left( x \right) = 3{x^2} - 4{x^4} - 5x + 9 + 6{x^4} + 2{x^3} - 5\)

\(A\left( x \right) = \left( { - 4{x^4} + 6{x^4}} \right) + 2{x^3} + 3{x^2} - 5x + 9 - 5\)

\(A\left( x \right) = 2{x^4} + 2{x^3} + 3{x^2} - 5x + 4\).

b) Đa thức \(A\left( x \right)\) có hệ số cao nhất là \(2\), hệ số tự do là \(5\) và bậc là \(4\).

c) Ta có: \(A\left( { - 1} \right) = 2.{\left( { - 1} \right)^4} + 2.{\left( { - 1} \right)^3} + 3.{\left( { - 1} \right)^2} - 5.\left( { - 1} \right) + 4 = 12\).

\(A\left( 0 \right) = {2.0^4} + {2.0^3} + {3.0^2} - 5.0 + 4 = 4\).

\(A\left( 2 \right) = {2.2^4} + {2.2^3} + {3.2^2} - 5.2 + 4 = 54\).

d) Ta có: \(B\left( x \right) - 3{x^2} + 2{x^4} - {x^3} = A\left( x \right)\)

Suy ra \(B\left( x \right) = A\left( x \right) + 3{x^2} - 2{x^4} + {x^3}\) hay \(B\left( x \right) = 2{x^4} + 2{x^3} + 3{x^2} - 5x + 4 + 3{x^2} - 2{x^4} + {x^3}\)

Suy ra \(B\left( x \right) = \left( {2{x^4} - 2{x^4}} \right) + \left( {2{x^3} + {x^3}} \right) + \left( {3{x^2} + 3{x^2}} \right) - 5x + 4\)

\(B\left( x \right) = 3{x^3} + 6{x^2} - 5x + 4\).

3.2. Ta có: \(13 = 12 + 1 = x + 1\).

Do đó, ta có: \(R\left( x \right) = {x^{10}} - \left( {x + 1} \right){x^9} + \left( {x + 1} \right){x^8} - \left( {x + 1} \right){x^7} + ... + \left( {x + 1} \right){x^2} - \left( {x + 1} \right)x + 10\)

Suy ra \(R\left( x \right) = {x^{10}} - {x^{10}} - {x^9} + {x^9} + {x^8} - {x^8} - {x^7} + ... + {x^3} + {x^2} - {x^2} - x + 10\)

\(R\left( x \right) = - x + 10 = - 12 + 10 = - 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

4.1.

(1,5 điểm)  4.1. Cho tam giác   A B C   vuông tại   B   có   A D   là tia phân giác của   ˆ B A C     ( D ∈ B C )  . Kẻ   D F ⊥ A C   tại   F  . Hỏi khoảng cách từ   D   đến đường thẳng   A C   bằng bao nhiêu centimet? Biết rằng   B D = 2 c m .    4.2. Tính chu vi tam giác cân có hai cạnh bằng   4 c m   và   8 c m  . (ảnh 1)

Xét

\(\Delta ABD\) và \(\Delta AED\), có:

\(\widehat B = \widehat E = 90^\circ \)(gt)

\(AD\): chung (gt)

\(\widehat {{A_1}} = \widehat {{A_2}}\) (vì \(AD\) là tia phân giác của \(\widehat {BAC}\))

Do đó, \(\Delta ABD = \Delta AED\) (g.c.g)

Suy ra \(BD = ED\) (hai cạnh tương ứng)

Mà \(BD = 2{\rm{ cm}}\) nên \(ED = 2{\rm{ cm}}{\rm{.}}\)

Vậy khoảng cách từ \(D\) đến đường thẳng \(AC\) là \(2{\rm{ cm}}{\rm{.}}\)

4.2.

Vì tam giác cân nên sẽ có các trường hợp về độ dài ba cạnh như sau.

TH1. \(4{\rm{ cm, 4 cm, 8 cm}}\). Xét thấy \(4{\rm{ cm + 4 cm = 8 cm}}\) nên không thể xảy ra trường hợp này.

TH2. \(4{\rm{ cm, 8 cm, 8 cm}}\). Nhận thấy \(4{\rm{ cm }} + {\rm{ 8 cm}} > {\rm{8 cm}}\) nên thỏa mãn điều kiện về ba cạnh của tam giác.

Do đó, chu vi của tam giác là \(4 + 8 + 8 = 20{\rm{ }}\left( {{\rm{cm}}} \right)\).

Lời giải

Hướng dẫn giải

(1,5 điểm) Cho tam giác   A B C  , trung tuyến   B D  . Trên tia đối của tia   D B   lấy điểm   E   sao cho   D E = B D  . Gọi   P , Q   lần lượt là điểm trên   B E   sao cho   B P = P Q = Q E  . Chứng minh:  a)   C P , C Q   cắt   A B , A E   tại trung điểm của   A B , A E  .  b)   C P ∥ A Q   và   C Q ∥ A P . (ảnh 1)

a) Gọi \(M,N\) lần lượt là trung điểm của \(AB,AE\).

Ta có: \(BP = PQ = QE\) và \(BD = DE\).

Mà \(BD = BP + PD;DE = QE + DQ\).

Suy ra \(PD = DQ\).

Hay \(D\) là trung điểm của \(PQ\).

Ta có: \(PD = \frac{1}{2}PQ\) hay \(PD = \frac{1}{2}BP\). Suy ra \(PD = \frac{1}{3}BD\)

Lại có \(BD\) là trung tuyến của \(\Delta ABC\).

Suy ra \(P\)là trọng tâm của \(\Delta ABC\).

Do đó, \(CP\) cắt \(AB\) tại trung điểm \(M.\)

Tương tự ta có: \(QD = \frac{1}{2}PQ = \frac{1}{2}QE\) hay \(QD = \frac{1}{3}ED\).

Do đó, \(Q\) là trọng tâm của tam giác \(AEC\).

Suy ra \(CQ\) cắt \(AE\) tại trung điểm \(N\).

b) Xét \(\Delta ADP\) và \(\Delta CDQ\) có:

\(AD = DC\) (gt)

\(\widehat {ADP} = \widehat {CDQ}\) (đối đỉnh)

\(PD = DQ\) (cmt)

Suy ra \(\Delta ADP = \Delta CDQ\) (c.g.c)

Suy ra \(\widehat {DAP} = \widehat {DCQ}\) (hai góc tương ứng).

Mà hai góc ở vị trí so le trong nên \(CQ\parallel AP.\)

Xét \(\Delta ADQ\) và \(\Delta CDP\) có:

\(AD = DC\) (gt)

\(\widehat {ADQ} = \widehat {CDP}\) (đối đỉnh)

\(PD = DQ\) (cmt)

Suy ra \(\Delta ADQ = \Delta CDP\) (c.g.c)

Suy ra \(\widehat {DAQ} = \widehat {DCP}\) (hai góc tương ứng).

Mà hai góc ở vị trí so le trong nên \(CP\parallel AQ\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP